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Motivation

Let d ∈ Z be square-free, and K = Q(
√
d) (i.e., [K : Q] = 2).

Then the ring of integers of K (denoted OK) is

OK =

{
{a+ b

√
d|a, b ∈ Z}, if d ≡ 2, 3 (mod 4),

{a
2 + b

2

√
d|a, b ∈ Z}, if d ≡ 1 (mod 4).

For positive d, the group of units of K (denoted O×
K) can be

computed by using Pell’s equations.
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Motivation

Examples

▶ K = Q(
√
5): O×

K = ⟨−1, 1+
√
5

2 ⟩.
▶ K = Q(

√
11): O×

K = ⟨−1, 10 + 3
√
11⟩.

▶ K = Q(
√
15): O×

K = ⟨−1, 4 +
√
15⟩.

▶ K = Q(
√
17): O×

K = ⟨−1, 4 +
√
17⟩.

Question

What happens if K = Q(α) is a cubic number field?
(i.e., [K : Q] = 3)
Namely, can we concretely determine O×

K for such K?
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Motivation

Here, we concentrate on the case K = Q(α): non-Galois totally
real cubic number field.
Specifically, we are interested in the family of cubic number fields
Kl = Q(ϵl), where the minimal polynomial of ϵl is

X3 + (l − 1)X2 − lX − 1 ∈ Z[X] (1)

with l ∈ Z≥3.
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Motivation

By Dirichlet’s unit theorem, the rank of O×
Kl

is 2.

Since ϵl is a root of (1), ϵl itself is a unit in O×
Kl
.

From direct calculation, we know that ϵl − 1 is also a unit.

Question

Is {ϵl, ϵl − 1} a pair of fundamental units for OKl
? i.e.,

O×
Kl

= ⟨−1, ϵl, ϵl − 1⟩ for l ∈ Z≥3?
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Ennola’s conjecture and its weak form

This is still an open problem.

Ennola’s conjecture

For l ∈ Z≥3, O×
Kl

= ⟨−1, ϵl, ϵl − 1⟩.

To reformulate Ennola’s conjecture, we define

jl = [O×
Kl

: ⟨−1, ϵl, ϵl − 1⟩]

and call jl the unit index of ⟨−1, ϵl, ϵl − 1⟩ in O×
Kl
.

Now, Ennola’s conjecture is equivalent to the following:

Ennola’s conjecture

For l ∈ Z≥3, jl = 1.
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Ennola’s conjecture and its weak form

There are several results on Ennola’s conjecture.

Theorem (Ennola, 2004)

{ϵl, ϵl − 1} is a pair of fundamental units if [OKl
: Z[ϵl]] ≤ l/3.

Theorem (Louboutin, 2017)

gcd(jl, 19!) = 1 for l ≥ 3, and jl = 1 for 3 ≤ l ≤ 5 · 107.

Theorem (Louboutin, 2021)

Suppose abc-conjecture holds. Then jl = 1 for any sufficiently
large l. i.e., Ennola’s conjecture is true except for finitely many l.
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Ennola’s conjecture and its weak form

Weak form of Ennola’s conjecture (Louboutin, 2021)

Assume Conjectures 1 and 2, which will be introduced later, hold
true. Then for any given prime p ≥ 3, there are only finitely many
l ≥ 3 such that p|jl.

Prof. Dohyeong Kim and I were able to prove that Conjectures 1
and 2 hold.

Weak form of Ennola’s conjecture (Louboutin, Choi and Kim)

For any given prime p ≥ 3, there are only finitely many l ≥ 3 such
that p|jl.
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Louboutin’s Conjecture 1

Louboutin’s conjectures are concerned with the family of following
polynomials.

Definition
For d ≥ 1, we define the the polynomial

Pd(X,Y ) = d
∑
k,l≥0

0≤2k+3l≤d

(−1)k−1
(k + l

k

)(d− k − 2l

k + l

)XkY d−2k−3l

d− k − 2l
∈ Z[X,Y ].

For small d’s, Pd(X,Y )’s are easy to describe.
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Louboutin’s Conjecture 1

Examples

▶ P1(X,Y ) = −Y

▶ P2(X,Y ) = −Y 2 + 2X

▶ P3(X,Y ) = −Y 3 + 3XY − 3

▶ P4(X,Y ) = −Y 4 + 4XY 2 − 2X2 − 4Y

Before we state Conjecture 1, we define

Sa,b(T ) :=
1

T a
+

1

T b
+ T a+b,

Ra,b(T ) :=
1

T a
+

(−1)a+b

T b
+ T a+b,

where a, b ∈ Z.
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Louboutin’s Conjecture 1

Conjecture 1

Let a, b ∈ Z be such that a, b ̸= 0, and c := a+ b ̸= 0. Then for
d ∈ {a, b, c},

P|d|(Sa,b(T ), Sa,b(1/T )) = −Sa,b(1/T
|d|). (2)

Moreover, if a is even and b is odd, then we have

P|d|(−Ra,b(T ),−Ra,b(1/T )) =

{
−Sa,b(1/T

|d|), if d = a,

Ra,b(1/T
|d|), if d ∈ {b, c} .

(3)

For instance, (2) is equivalent to

P|d|

(
1

T a
+

1

T b
+ T a+b, T a + T b +

1

T a+b

)
= −

(
T a|d| + T b|d| +

1

T (a+b)|d|

)
.
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Proof of Conjecture 1

The following proposition is a key to solve Conjecture 1.

Proposition

For any d ≥ 4,

Pd(X,Y ) = Y Pd−1(X,Y )−XPd−2(X,Y ) + Pd−3(X,Y ). (4)

Proof.

Proceed by induction. Namely, we verify that the coefficients of
XkY d−2k−3l in the LHS and the RHS of (4) coincide.
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Proof of Conjecture 1

The interpretation of (4) is as follows. Recall Newton identities of
three variables.

Theorem (Newton identities)

Let sk = sk(x1, x2, x3) = xk1 + xk2 + xk3 be k-th power sum of three
variables x1, x2, x3. Define
σ1 = x1 + x2 + x3, σ2 = x1x2 + x2x3 + x3x1, σ3 = x1x2x3. If
d > 3, then

sd = σ1sd−1 − σ2sd−2 + σ3sd−3. (5)

Hence, sd = fd(σ1, σ2, σ3) for some polynomial fd in σ1, σ2, σ3 for
each d ≥ 4.
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Proof of Conjecture 1

Examples

▶ f1(σ1, σ2, σ3) = σ1

▶ f2(σ1, σ2, σ3) = σ2
1 − 2σ2

▶ f3(σ1, σ2, σ3) = σ3
1 − 3σ1σ2 + 3σ3

▶ f4(σ1, σ2, σ3) = σ4
1 − 4σ2

1σ2 + 2σ2
2 + 4σ1σ3.

Recall Pd(X,Y )’s in the previous section.

Examples

▶ P1(X,Y ) = −Y

▶ P2(X,Y ) = −Y 2 + 2X

▶ P3(X,Y ) = −Y 3 + 3XY − 3

▶ P4(X,Y ) = −Y 4 + 4XY 2 − 2X2 − 4Y
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Proof of Conjecture 1

In this setting, suppose σ3 = 1.
Then σ2 becomes

x1x2 + x2x3 + x3x1 =
1

x1
+

1

x2
+

1

x3
,

and (5) is

fd(σ1, σ2, 1) = σ1fd−1(σ1, σ2, 1)− σ2fd−2(σ1, σ2, 1) + fd−3(σ1, σ2, 1). (6)
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Proof of Conjecture 1

In terms of x1, x2, x3, (6) is

xd
1 + xd

2 + xd
3 =fd

(
x1 + x2 + x3,

1

x1
+

1

x2
+

1

x3
, 1

)
=(x1 + x2 + x3)fd−1

(
x1 + x2 + x3,

1

x1
+

1

x2
+

1

x3
, 1

)
−
(

1

x1
+

1

x2
+

1

x3

)
fd−2

(
x1 + x2 + x3,

1

x1
+

1

x2
+

1

x3
, 1

)
+ fd−2

(
x1 + x2 + x3,

1

x1
+

1

x2
+

1

x3
, 1

)
.
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Proof of Conjecture 1

Put σ2 = X and σ1 = Y . Then (6) is

fd(Y,X, 1) = Y fd−1(Y,X, 1)−Xfd−2(Y,X, 1) + fd−3(Y,X, 1). (7)

Compare (7) with (4):

Pd(X,Y ) = Y Pd−1(X,Y )−XPd−2(X,Y ) + Pd−3(X,Y ).

In fact, for any d ≥ 1, Pd(X,Y ) = −fd(Y,X, 1).
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Proof of Conjecture 1

Hence, we naturally obtain the following corollary:

Corollary

Let x1, x2, x3 ̸= 0 be such that x1x2x3 = 1, and d ≥ 1. Then

−
(

1

xd1
+

1

xd2
+

1

xd3

)
= Pd

(
x1 + x2 + x3,

1

x1
+

1

x2
+

1

x3

)
.

Proof.
We know

Pd

(
x1 + x2 + x3,

1

x1
+

1

x2
+

1

x3

)
= −fd

(
1

x1
+

1

x2
+

1

x3
, x1 + x2 + x3, 1

)
,

and the fd comes from Newton identities.
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Proof of Conjecture 1

Now we are ready to prove Conjecture 1.

Proof of Conjecture 1.

First, we verify (2). Put x1 = 1/T a, x2 = 1/T b, x3 = T a+b. Then
Sa,b(T ) = x1 + x2 + x3, x1, x2, x3 ̸= 0, and x1x2x3 = 1.
From the previous corollary,

−Sa,b(1/T
|d|) = −

(
T a|d| + T b|d| +

1

T (a+b)|d|

)
= −

(
1

xd
1

+
1

xd
2

+
1

xd
3

)
= Pd

(
x1 + x2 + x3,

1

x1
+

1

x2
+

1

x3

)
= P|d|(Sa,b(T ), Sa,b(1/T )).

The proof of (3) directly follows from the same method, by
replacing x1 → −x1, x2 → x2, and x3 → −x3.
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Proof of Conjecture 1

Remark

One can directly use (4) to prove (by induction) for d ≥ 1

Pd

(
1

X
+

1

Y
+XY,X + Y +

1

XY

)
= −

(
Xd + Y d +

1

XdY d

)
,

which is equivalent to the previous corollary.

Remark
By the same argument as in the proof of the previous proposition,
one can deduce

fd(σ1, σ2, σ3) = d
∑
0≤k,l

0≤2k+3l≤d

(−1)k
(
k + l

k

)(
d− k − 2l

k + l

)
σd−2k−3l
1 σk

2σ
l
3

d− k − 2l
,

and if σ1 = x1 + x2 + x3, σ2 = x1x2 + x2x3 + x3x1,
σ3 = x1x2x3, then fd(σ1, σ2, σ3) = xd1 + xd2 + xd3.
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Louboutin’s Conjecture 2

We need more definitions to formalize Conjecture 2. For each case
below, we define 0 ̸= Fa,b(X,Y ) =

∑
u,v fu,vX

uY v as in the
following table:

Cases Fa,b(X,Y )

Case 1: a ≥ 1 odd and
b ≥ 1 odd

−Pa(Y,X)− Pb(Y,X) + Pc(X,Y )

Case 2: a ≥ 1 odd and
b ≥ 1 even

−Pa(−Y,−X)− Pb(−Y,−X) + Pc(−X,−Y )

Case 3: a ≥ 2 even and
b ≥ 1 odd

−Pa(−Y,−X)− Pb(−Y,−X)− Pc(−X,−Y )

Table: Fa,b(X,Y )’s for each case.
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Louboutin’s Conjecture 2

Let m ≥ 3 be an odd integer. With a, b ∈ Z, we define

Ra,b,m(T ) = Ra,b(T ) +
b− a

m
T−a−m +

(−1)a+b(a− 2b)

m
T−b−m +

b

m
T a+b−m,

Ga,b,m(T ) = Fa,b(Ra,b,m(T ), R−a,−b,m(T )),

Na,b,m = −degGa,b,m(T ),

s = degRa,b(T ), t = degR−a,−b(T ),

Ma,b = max{us+ vt : fu,v ̸= 0}.

Conjecture 2

Assume that (a, b) ∈ Z̸=0 × Z≥1 is not of the form (−2b, b) with
b ≥ 1 odd, (b, b) with b ≥ 1 odd, (−b/2, b) with b ≥ 2 even. Let
ma,b = a2 + ab+ b2 ≥ 5 be odd. Then Ma,b = (a+ b)max(a, b),
Na,b,ma,b

= min(a, b)2 for any cases listed in the previous table.
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Proof of Conjecture 2

For each case in the table, we define

Ga,b(T ) := Fa,b(Ra,b(T ), Ra,b(1/T )).

Recall

Ra,b(T ) =
1

T a
+

(−1)a+b

T b
+ T a+b.

Louboutin showed that Conjecture 1 implies the following lemma.
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Proof of Conjecture 2

Lemma

Ga,b(T )’s for each case are given as the following table:

Cases Ga,b(T )

Case 1 T−a2
+ T−b2 − T−c2 + 2T−ab

Case 2 −T−a2
+ T−b2 + T−c2 + 2T−ab

Case 3 T−a2
+ T−b2 − T−c2

Table: Ga,b(T )’s in each case.

25 / 34



Proof of Conjecture 2

We set

Ea,b(T ) =
b− a

T a
+

(−1)a+b(a− 2b)

T b
+ bT a+b.

For notational convenience, we let ma,b = m from now on. Then

Ra,b,m(T ) = Ra,b(T ) +
1

mTm
Ea,b(T ),

R−a,−b,m(T ) = R−a,−b(T ) +
1

mTm
E−a,−b(T )

= Ra,b

(
1

T

)
− 1

mTm
Ea,b

(
1

T

)
.
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Proof of Conjecture 2

We only sketch the proof of Conjecture 2. For Case 1,

Fa,b(X,Y ) = −Pa(Y,X)− Pb(Y,X) + Pc(X,Y )

and

Ga,b,m(T ) =Fa,b

(
Ra,b(T ) +

1

mTm
Ea,b(T ), R−a,−b(T ) +

1

mTm
E−a,−b(T )

)
=− Pa

(
Ra,b

(
1

T

)
− 1

mTm
Ea,b

(
1

T

)
, Ra,b(T ) +

1

mTm
Ea,b(T )

)
− Pb

(
Ra,b

(
1

T

)
− 1

mTm
Ea,b

(
1

T

)
, Ra,b(T ) +

1

mTm
Ea,b(T )

)
+ Pc

(
Ra,b(T ) +

1

mTm
Ea,b(T ), Ra,b

(
1

T

)
− 1

mTm
Ea,b

(
1

T

))
.
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Proof of Conjecture 2

Now we explicitly describe

−Pa

(
Ra,b

(
1

T

)
− 1

mTm
Ea,b

(
1

T

)
, Ra,b(T ) +

1

mTm
Ea,b(T )

)
using the formula

Pd(X,Y ) = d
∑
k,l≥0

0≤2k+3l≤d

(−1)k−1

(
k + l

k

)(
d− k − 2l

k + l

)
XkY d−2k−3l

d− k − 2l
.
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Proof of Conjecture 2

− Pa

(
Ra,b

(
1

T

)
− 1

mTm
Ea,b

(
1

T

)
, Ra,b(T ) +

1

mTm
Ea,b(T )

)
=a

∑
k,l≥0

0≤2k+3l≤a

(−1)k
(
k + l

k

)(
a− k − 2l

k + l

)
1

a− k − 2l
·

(
Ra,b

(
1

T

)
− 1

mTm
Ea,b

(
1

T

))k (
Ra,b(T ) +

1

mTm
Ea,b(T )

)a−2k−3l

=− Pa

(
Ra,b

(
1

T

)
, Ra,b(T )

)
+ a

∑
k,l≥0

0≤2k+3l≤a

(−1)k
(
k + l

k

)(
a− k − 2l

k + l

)
1

a− k − 2l

∑
0≤i≤k

0≤j≤a−2k−3l
(i,j)̸=(0,0)

Aa−2k−3l,j
k,i

︸ ︷︷ ︸
=A1(T )

,
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Proof of Conjecture 2

where

Aa−2k−3l,j
k,i =

(
k

i

)(
−1

mTm
Ea,b

(
1

T

))i(
Ra,b

(
1

T

))k−i

·

(
a− 2k − 3l

j

)(
1

mTm
Ea,b(T )

)j

(Ra,b(T ))
a−2k−3l−j .

One can easily verify that

deg (A1(T )) = −b2.
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Proof of Conjecture 2

We repeat the similar process to −Pb(Y,X) and Pc(X,Y ) and
know that

− Pb

(
Ra,b

(
1

T

)
− 1

mTm
Ea,b

(
1

T

)
, Ra,b(T ) +

1

mTm
Ea,b(T )

)
=− Pb

(
Ra,b

(
1

T

)
, Ra,b(T )

)
+ (degree −a2 polynomial B1(T )),

Pc

(
Ra,b(T ) +

1

mTm
Ea,b(T ), Ra,b

(
1

T

)
− 1

mTm
Ea,b

(
1

T

))
=Pc

(
Ra,b(T ), Ra,b

(
1

T

))
+ (degree −min(a, b)2 polynomial C1(T )).
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Proof of Conjecture 2

Hence, we know (by the previous lemma)

Ga,b,m(T ) =Ga,b(T ) + (degree −min(a, b)2 polynomial)

=T−a2

+ T−b2 − T−c2 + 2T−ab

+ (degree −min(a, b)2 polynomial).

We can also observe that the coefficient of T−min(a,b)2 in
Ga,b,m(T ) is nonzero. Hence, Na,b,m = min(a, b)2 for Case 1.
We can show Na,b,m = min(a, b)2 for other cases in the same way.

32 / 34



Proof of Conjecture 2

Ma,b = (a+ b)max(a, b) can be checked in a similar way.
By definitions of Ma,b and Fa,b in Table 1, Ma,b should be one of
the followings (c = a+ b):

max{(a+ b)(a− 2k − 3l) + kmax(a, b) : 0 ≤ k, l, 0 ≤ 2k + 3l ≤ a}, (8)

max{(a+ b)(b− 2k − 3l) + kmax(a, b) : 0 ≤ k, l, 0 ≤ 2k + 3l ≤ b}, (9)

max{(a+ b)k + (c− 2k − 3l)max(a, b) : 0 ≤ k, l, 0 ≤ 2k + 3l ≤ c}. (10)

Regardless of max(a, b), (8), (9), (10) attain maxima at
k = l = 0.
If max(a, b) = a, then (8) = a(a+ b), (9) = b(a+ b),
(10) = a(a+ b) and clearly Ma,b = a(a+ b) = (a+ b)max(a, b).
We can show Ma,b = a(a+ b) = (a+ b)max(a, b) when
max(a, b) = b in the same way.
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Thank you for your attention!
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