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Motivation

Let d € Z be square-free, and K = Q(V/d) (i.e., [K : Q] = 2).
Then the ring of integers of K (denoted Ok) is

o {{a+b\/&|a,beZ}, ifd=2,3 (mod 4),
K:

{¢+ %\/&’CL?b €Z}, ifd=1 (mod 4).

For positive d, the group of units of K (denoted O ) can be
computed by using Pell’s equations.
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Motivation

Examples

> K =Q(V5): Of = (-1,45),

> K =Q(V11): 0% = (1,10 + 3v/11).
> K =Q(V15): 0% = (—1,4+ V/15).
> K =QW1T7): OF% = (1,4 + V17).

Question

What happens if K = Q(«) is a cubic number field?
(e, [K : Q] =3)

Namely, can we concretely determine O for such K7
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Motivation

Here, we concentrate on the case K = Q(«): non-Galois totally
real cubic number field.

Specifically, we are interested in the family of cubic number fields
K; = Q(¢;), where the minimal polynomial of ¢; is

X34+ (1-1)X*-1X -1€7Z[X] (1)

with [ € Zzg.
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Motivation

By Dirichlet’s unit theorem, the rank of O is 2.
Since ¢ is a root of (1), ¢ itself is a unit in O .
From direct calculation, we know that ¢, — 1 is also a unit.

Question

Is {€;,e; — 1} a pair of fundamental units for Ok, 7 i.e.,
OIXQ = <—1,El,€l — 1> forl € Zzg?
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Ennola’s conjecture and its weak form

This is still an open problem.

Ennola’s conjecture

For | € Z23, OIXQ = <—1,€l,61 = 1>.

To reformulate Ennola’s conjecture, we define
Ji= [ Xl : <_1)61761 - 1)]

and call j; the unit index of (—1,¢;,¢; — 1) in O[X(l.
Now, Ennola’s conjecture is equivalent to the following:

Ennola’s conjecture

For [ € Zzg, g =1
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Ennola’s conjecture and its weak form

There are several results on Ennola’s conjecture.
Theorem (Ennola, 2004)

{e1, €1 — 1} is a pair of fundamental units if [Ok, : Zleg]] < 1/3.

Theorem (Louboutin, 2017)
ged(5;,19)) =1 for1 >3, and jy =1 for 3 <1< 5-107.

Theorem (Louboutin, 2021)

Suppose abc-conjecture holds. Then j; = 1 for any sufficiently
large l. i.e., Ennola’s conjecture is true except for finitely many I.
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Ennola’s conjecture and its weak form

Weak form of Ennola’s conjecture (Louboutin, 2021)

Assume Conjectures 1 and 2, which will be introduced later, hold
true. Then for any given prime p > 3, there are only finitely many
[ > 3 such that plj;.

Prof. Dohyeong Kim and | were able to prove that Conjectures 1
and 2 hold.

Weak form of Ennola’s conjecture (Louboutin, Choi and Kim)

For any given prime p > 3, there are only finitely many | > 3 such
that plj;.
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Louboutin’'s Conjecture 1

Louboutin's conjectures are concerned with the family of following
polynomials.

Definition
For d > 1, we define the the polynomial

_1/k+ 1 d—k— 20\ XPyd—2k=3l
PAX.Y)=d _1)k-1 —— € Z[X,Y].
i) =d S (D Co O ) S e uxy)

0<2k+3I<d

For small d's, P;(X,Y)'s are easy to describe.
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Louboutin’'s Conjecture 1

Examples
> P(X,Y)=
> P(X,Y) = —Y2 +2X
> P3(X,Y)=-Y3+3XY -3
> Py(X,Y)=-Y*+4XY? - 2X?% - 4Y

Before we state Conjecture 1, we define

1
Sa,b(T) T + ﬁ + Ta+b

1 1 a+b
Rop(T) := Ta + (= T) + Tt

where a,b € Z.
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Louboutin’'s Conjecture 1

Conjecture 1

Let a,b € Z be such that a,b # 0, and ¢c:=a + b # 0. Then for
d e {a,b,c},

Pig(Sa,p(T), Sap(1/T)) = —Sap(1/T!). (2)
Moreover, if a is even and b is odd, then we have

—Sap(1/T1), if d = a,

Rap(1/TM4),  ifd e {b,c}. (3)

Pa|(=Rap(T), —Rap(1/T)) = {

For instance, (2) is equivalent to

1 1 a+b ma b 1 . ald| bld| 1
P‘d|<ﬁ+ﬁ+T T g ) = (T T )
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Proof of Conjecture 1

The following proposition is a key to solve Conjecture 1.
Proposition

For any d > 4,

Pd(Xv Y) = YPd—l(X’ Y) - XPd—2(X’ Y) + Pd—S(Xv Y) (4)

Proof.
Proceed by induction. Namely, we verify that the coefficients of
Xkyd=2k=3lin the LHS and the RHS of (4) coincide. O
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Proof of Conjecture 1

The interpretation of (4) is as follows. Recall Newton identities of
three variables.

Theorem (Newton identities)

Let s, = sp(x1, 22, 73) = a§ + 2% + 2% be k-th power sum of three
variables x1,xo,x3. Define
01 =11+ x2 + X3, 09 = X122 + Toxs + T3T1, 03 = T1Tox3. If
d > 3, then
S84 = 01S84—1 — 0284—2 + 03S4—3. (5)

Hence, sq = fq(o1,02,03) for some polynomial f; in o1, 09,03 for
each d > 4.
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Proof of Conjecture 1

Examples
> fi(o1,02,03) =01
> fa(or,02,03) = 0% — 20,
> f3(01,02,03) = 0F — 30102 + 303
> fi(01,02,03) = 0} — 40209 + 203 + 40103.

Recall Py(X,Y)’s in the previous section.

Examples
> P(X,Y)=
> P(X,Y) = —Y2 +2X

> Py(X,Y)=-Y34+3XY -3

> Py(X,Y)=-Y*+4XY? - 2X?% - 4Y

)

)
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Proof of Conjecture 1

In this setting, suppose o3 = 1.
Then o9 becomes

1 1 1
T1T2 + T2T3 + X3T1 = — + — + —,
L1 T2 T3

and (5) is

fa(o1,02,1) = o1fa—1(01,02,1) — o2 fa—2(01,02,1) + fa—s(o1,02,1).

(6)
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Proof of Conjecture 1

In terms of x1,x9,x3, (6) is

1 1 1
af + 23 + 2§ =f4 (x1+xz+x3,—+—+f 1)

X1 ) €3

1 1 1
=(z1 4+ x2 + x3) fa—1 | 21 + 22 +$3,* +—+ ;,1
T2 3

1 1 1 1
- (*—F*—F*) fa—2 (321 +$2+$3,*+*+*,1)
1 T2 €T3 T2 T3

1
+ fa—2 (Il +I2+I377+7+7,1>'
X1 i) T3
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Proof of Conjecture 1

Put 0o = X and 03 =Y. Then (6) is
fd(K X, 1) = defl(yrv X, 1) - de*Q(Y7 X, 1) + fd*3(Y7 X, 1) (7)
Compare (7) with (4):
Pa(X,Y) =Y P (X)Y) = XPyo(X,Y) + Py_3(X,Y).

In fact, forany d > 1, Py(X,Y) = —f4(Y, X, 1).
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Proof of Conjecture 1

Hence, we naturally obtain the following corollary:

Corollary
Let x1,x2,x3 # 0 be such that x1xox3 =1, and d > 1. Then

1 1 1 1 1 1
= 7d+7d+7d = /2y x1+x2+x3,—+f—i—

Proof.
We know

1 1 1
Pd<x1+x2+x3,f+f+f>:—fd( +*+ ,JC1+JC2+JC3,1>,

o X3 i)

and the f; comes from Newton identities. Ol
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Proof of Conjecture 1

Now we are ready to prove Conjecture 1.

Proof of Conjecture 1.

First, we verify (2). Put 1 = 1/T%, 29 = 1/T%, 23 = T%*®. Then

Sap(T) = x1 + 22 + x3, 1,22, 23 # 0, and z12923 = 1.
From the previous corollary,

—Pa 1 Tld‘ = — Ta‘dl Tb‘dl N
Sl * t Terom xé + 8 + g
1 1 1
:Pd($1+$2+x3,—+f+ >
T T2 T3
= Pla|(Sa,p(T), Sap(1/T)).

The proof of (3) directly follows from the same method, by
replacing x1 — —x1, x2 — 2, and x3 — —x3. ]
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Proof of Conjecture 1

Remark

One can directly use (4) to prove (by induction) for d > 1

11 1
Pd< += +XYX+Y+)——<Xd+Yd+

XY XY Xdyd ) ’

which is equivalent to the previous corollary.

Remark

By the same argument as in the proof of the previous proposition,
one can deduce

_ wlk+1\(d—k—20\ i =3ksL
falor,02,09) =d = > (-1) ( k )( k+1 ) d—k—2

0<k,l
0<2k+31<d

and if 01 = 21 + 29 + 3, 09 = 12X + ToT3 + T3T1,
o3 = x12973, then fq(o1,09,03) = CCil + asg + xg
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Louboutin's Conjecture 2

We need more definitions to formalize Conjecture 2. For each case
below, we define 0 # F, (X, Y) =3, , fup, X"Y" as in the
following table:

’ Cases ‘ F,p(X,Y) ‘
Case 1: @ > 1 odd and | —Po(Y,X) — Po(Y, X) + Pe(X,Y)
b>1 odd
Case 2: a > 1odd and | —Py(-Y,—X) — P(-Y,—X) 4+ P.(—X,-Y)
b>1 even
Case 3: a>2evenand | —Pu(-Y,—X)— P (-Y,—X) — P.(—X,-Y)
b>1 odd

Table: F, (X,Y)'s for each case.
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Louboutin's Conjecture 2

Let m > 3 be an odd integer. With a,b € Z, we define

_1)a+b (g —
b (D@ =2b) fpom b

7Ta+b—m
m m ’

Ra,b,m (T) = Ra,b(T) +
Ga,b,m (T) = Fa,b(Ra,b,m (T)7 Rfa,fb,m(T)%
Na,b,m = - deg Ga,b,m(T)7
s=degR,s(T), t=degR_o_(T),
Mo, = max{us + vt : fu. # 0}.

- aT—a—m +
m

Conjecture 2

Assume that (a,b) € Zo x Z>1 is not of the form (—2b,b) with
b>1 odd, (b,b) with b > 1 odd, (—b/2,b) with b > 2 even. Let
Map = a? + ab+b*> > 5 be odd. Then M,; = (a + b) max(a,b),
Nabm,, = min(a,b)? for any cases listed in the previous table.
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Proof of Conjecture 2

For each case in the table, we define

Ga,b(T) = Fa,b(Ra,b(T)7 Ra,b(l/T>)‘
Recall

1 1 a+b
RCL,b(T) Ta + ( T)

+ Ta+b .

Louboutin showed that Conjecture 1 implies the following lemma.
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Proof of Conjecture 2

Lemma

Gop(T)'s for each case are given as the following table:

| Cases

| Ga,b(T)

Case 1

T—01+T—527T—02+2T—0‘b

Case 2

—T-a" 4 T-% 4 T—<" 4 o7—0b

Case 3

T-a" 4 7% _T7-<

Table: G4 5(T)’s in each case.
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Proof of Conjecture 2

We set
b—a (—1)%(a — 2b)
E,(T) = ath

For notational convenience, we let m,; = m from now on. Then
1
Ra,b,m(T) = Ra,b(T) + 7Ea b(T),

1
R—a,—b,m(T) :R—a,—b(T) + — mTm™ E—a b( )
1

1 1
= Ra,b (?) - mEa,b (T) .
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Proof of Conjecture 2

We only sketch the proof of Conjecture 2. For Case 1,
Foo(X,)Y)=—-FP,(Y,X) - FRY,X)+ P.(X,Y)
and

1

Ga,b,m(T) :Fa,b (Ra,b(T) + Eu,b(T)7 Rfa,fb(T) + WEfa,fb(T)>

1 1 1 1

=-F, (Ra,b (T) - WEa,b <T) ,Ra,b(T) + mEa,b(T))
1 1 1 1

- P (Ra b (?) - WEa,b (f) 7Ra,b(T) + WEa,b(T)>

1 1 1 1
+ P. | Rap(T) + WEa,b(T)yRa,b f) — WEa,b (f)) .

1
mIm™
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Proof of Conjecture 2

Now we explicitly describe

1 1 1 1
-P, (Ra,b (T) - mEa,b (T) ,Ra,b(T) + WEa,b(T)>

using the formula

_ 1 k41 d—k—2l Xde72k73l
e (’“ )( bl > d—k—2

k,1>0
0<2k+31<d
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Proof of Conjecture 2

1 1 1 1
- P, (Ra b (T) - 7Ea,b <T) 7Ra,b(T) + WEa,b(T))
B k+1 -2l 1
=a ( )( k+1 )ak2l
k,1>0

0<2k+3l<a
1 a—2k—3l
——Fa. (T
(2) (s in)

1
(oo (7) = g
k}+l a — —2l 1 a—2k—31,j
+a > ( >( k+1 )ale > AL ’

= r(ros (5 ) T>)

k,1>0 0<i<k
0<2k+3l<a O<j<a —2k—3l
(4,5)#(0,0)
=A1(T)
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Proof of Conjecture 2

where

s [k -1 1\)* 1\\**
a—2k—3l,j __ _ —
Ak'i (Z) <me Eaﬁb <T)) (Ra’b (T>>

One can easily verify that

deg (A1(T)) = —b°.
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Proof of Conjecture 2

We repeat the similar process to —P,(Y, X) and P.(X,Y) and
know that

1 1 1 1
P (Rus (=) = ——Eup (=), Rat(T) + —— Eas(T
”<R ’b(T> mTm ’b(T) Rap(T) + o Eao ))

=—P (Ra,b (%) ,Ra,b(T)> + (degree —a® polynomial B;(T)),
1 1 1 1
P. (Ra,b(T) + mEa,b(T)7Ra,b (T) - WEa’b (f))

=P, (Ra,b(T),Ra,b (%)) + (degree — min(a, b)? polynomial C1(T)).
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Proof of Conjecture 2

Hence, we know (by the previous lemma)
Gapm(T) =Gap(T) + (degree —min(a,b)* polynomial)
—a? —b2 —c2 —ab
=T +T -T + 27T
+ (degree — min(a, b)® polynomial).
We can also observe that the coefficient of 7'~ ™in(a.0)? jp
Ga,pm(T) is nonzero. Hence, N, = min(a, b)? for Case 1.

We can show N, 3, = min(a, b)2 for other cases in the same way.
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Proof of Conjecture 2

M, = (a + b) max(a, b) can be checked in a similar way.
By definitions of M, ; and Iy in Table 1, M, ; should be one of
the followings (¢ = a + b):

max{(a + b)(a — 2k — 31) + k max(a 0<kl 0<2k+3l<a}, (8)
max{(a + b)(b — 2k — 3l) + kmax(a 0<kl 0<2k+31<b}, (9
max{(a + b)k + (¢ — 2k — 3l) max(a,b) : 0 < k,I, 0<2k+ 3l <c}. (10)

)
)

Regardless of max(a,b), (8), (9), (10) attain maxima at
k=101=0.

If max(a,b) = a, then (8) = a(a+b), (9) =b(a+1D),

(10) = a(a +b) and clearly M, = a(a + b) = (a + b) max(a, b).
We can show M, ;, = a(a + b) = (a + b) max(a, b) when
max(a,b) = b in the same way.
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Thank you for your attention!
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