Extending the Legendre Symbol to the Rédei Symbol Using Milnor Numbers

Inseo Kim

Seoul National University

February 12, 2025

- 3 Magnus Expansion
- 4 Extending Legendre symbol to Rédei Symbol

Introduction

- 2 Koch's Theorem
- 3 Magnus Expansion
- 4 Extending Legendre symbol to Rédei Symbol

We can observe the following similarities between knots and prime numbers.

Knot side	Prime side
Links	Primes
Link group of L $G_L(M) = \pi_1(M \setminus L)$	Galois group
	with restricted ramification in ${\boldsymbol S}$
	$G_S(k) = \pi_1 \left(\text{Spec} \left(\mathcal{O}_k \right) \backslash S \right)$
Linking number $lk(L, K)$	Legendre symbol $\left(rac{q}{p} ight)$
$\operatorname{lk}(L,K) = \operatorname{lk}(K,L)$	$\left(\frac{q}{p}\right) = \left(\frac{p}{q}\right) (p,q \equiv 1 \bmod 4)$

æ

> < 문 > < 문 >

Image: Image:

Introduction

- 3 Magnus Expansion
- 4 Extending Legendre symbol to Rédei Symbol

Let $S = \{p_1, \cdots, p_n\}$ be a finite set of primes.

We fix an embedding of \mathbb{Q} into an algebraic closure of \mathbb{Q} , and a prime number l.

Let $\mathbb{Q}_{\bar{S}}(l)$ be the maximal *l*-extension of \mathbb{Q} unramified outside \bar{S} .

The group $G_S(l)$ is defined by

 $G_S(l) := \operatorname{Gal}\left(\mathbb{Q}_{\bar{S}}(l)/\mathbb{Q}\right).$

Proposition

 $G_S(l)$ is a pro-l group.

(Proof omitted)

イロト イポト イヨト イヨト 二日

Koch's Theorem

Let l be a fixed prime number and let $S = \{p_1, \dots, p_r\}$ be a set of r distinct prime numbers such that $p_i \equiv 1 \mod l(1 \le i \le r)$.

Let $e_S := \max \{ e \mid p_i \equiv 1 \mod l^e (1 \le i \le r) \}$, $m = l^e (1 \le e \le e_S)$.

Choose an embedding of \mathbb{Q} into $\overline{\mathbb{Q}}$.

Fix a primitive *l*-th root of unity, and define $\zeta_{l^n} \in \overline{\mathbb{Q}}$ by a primitive *l*ⁿ-th root of unity such that $\zeta_{l^t}^{l^s} = \zeta_{l^{t-s}}$ $(t \ge s)$.

Lemma

 $G_S(l)={\rm Gal}\,(\mathbb{Q}_{\bar{S}}(l)/\mathbb{Q})$ is generated by the monodromy τ_i at p_i and the Frobenius automorphism σ_i at p_i , defined by

$$\begin{aligned} \tau_i\left(\zeta_{l^n}\right) &= \zeta_{l^n}, \quad \tau_i\left(\sqrt[l^n]{p_i}\right) = \zeta_{l^n}\sqrt[l^n]{p_i}, \\ \sigma_i\left(\zeta_{l^n}\right) &= \zeta_{l^n}^{p_i}, \quad \sigma_i\left(\sqrt[l^n]{p_i}\right) = \sqrt[l^n]{p_i}. \end{aligned}$$

(Proof omitted)

Koch's theorem

(i) $G_S(l)$ has the following presentation:

$$G_S(l) \cong \left\langle x_1, \cdots, x_r \mid x_1^{p_1-1} [x_1, y_1] = \cdots = x_r^{p_r-1} [x_r, y_r] = 1 \right\rangle$$

where x_i , y_i represent τ_i , σ_i , respectively.

That is, $G_S(l)$ is a quotient of $\hat{F}(l)$, the pro-l completion of the free group F on words x_1, \dots, x_r .

Remark. The words y_i 's can be expressed by x_i 's.

Koch's Theorem(continued)

(ii) There exists $\mathrm{lk}\,(p_i,p_j)\in\mathbb{Z}_l$ for i
eq j such that

$$\sigma_j \equiv \prod_{i \neq j} \tau_i^{\operatorname{lk}(p_i, p_j)} \mod [G_S(l), G_S(l)].$$

(iii) Define $\operatorname{lk}_m(p_i, p_j) \in \mathbb{Z}/m\mathbb{Z}$ by $\operatorname{lk}(p_i, p_j) \mod m$. Then

$$\zeta_m^{\mathrm{lk}_m(p_i,p_j)} = \left(\frac{p_j}{p_i}\right)_m$$

holds, where $\left(\frac{*}{p_i}\right)_m$ is the m-th power residue symbol in \mathbb{Q}_{p_i} .

(Proof omitted)

★個 ▶ ★ 国 ▶ ★ 国 ▶ → 国

Introduction

- 2 Koch's Theorem
- 3 Magnus Expansion
- 4 Extending Legendre symbol to Rédei Symbol

Let $\mathfrak R$ be a compact complete local ring and $\mathfrak G$ be a pro-finite group.

 $\mathfrak{R}[[\mathfrak{G}]]$ is the complete group algebra of \mathfrak{G} over \mathfrak{R} .

A continuous homomorphism $f : \mathfrak{G} \to \mathfrak{H}$ of pro-finite groups induces a continuous homomorphism $f : \mathfrak{R}[[\mathfrak{G}]] \to \mathfrak{R}[[\mathfrak{H}]]$ of completed group algebras.

When \mathfrak{H} is the trivial group $\{e\}$, the induced map denoted by

 $\epsilon_{\mathfrak{R}[[\mathfrak{G}]]}:\mathfrak{R}[[\mathfrak{G}]]\to\mathfrak{R},$

is called the augmentation map. We will discuss $\mathbb{Z}_{l}[[\hat{F}(l)]]$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let $\mathbb{Z}_l \langle \langle X_1, \ldots, X_r \rangle \rangle$ be the algebra of non-commutative formal power series of variables X_1, \ldots, X_r over \mathbb{Z}_l ,

$$\left\{\sum_{1\leq i_1,\ldots,i_n\leq r}a_{i_1\cdots i_n}X_{i_1}\cdots X_{i_n}\mid n\geq 0, a_{i_1\cdots i_n}\in\mathbb{Z}_l\right\}.$$

Magnus Isomorphism

Let F be the free group on word $x_1, ..., x_r$, $\hat{F}(l)$ be a pro-l completion of F.

Define the homomorphism $M:F\to \mathbb{Z}_l\left<\left< X_1,\ldots,X_r\right>\right>^{\times}$ by

$$M(x_i) := 1 + X_i,$$

 $M(x_i^{-1}) := 1 - X_i + X_i^2 - \cdots \quad (1 \le i \le r).$

Extending to $\mathbb{Z}_l[[\hat{F}(l)]]$, we obtain a continuous \mathbb{Z}_l -algebra homomorphism $\hat{M}: \mathbb{Z}_l[[\hat{F}(l)]] \longrightarrow \mathbb{Z}_l \langle \langle X_1, \dots, X_r \rangle \rangle$.

Proposition

 \hat{M} is an isomorphism of \mathbb{Z}_l -algebra, called the pro-l Magnus isomorphism.

(Proof omitted)

イロト 不得 トイラト イラト 一日

Definition

Let α be an element in $\mathbb{Z}_l[[\hat{F}(l)]]$.

The pro-l Magnus expansion of α is defined by the image of the pro-l Magnus isomorphism

$$\hat{M}(\alpha) = \epsilon_{\mathbb{Z}_l[[\hat{F}(l)]]}(\alpha) + \sum_{\substack{I=(i_1\dots i_n)\\1\leq i_1,\dots,i_n\leq r}} \hat{\mu}(I;\alpha) X_I, \quad X_I := X_{i_1}\cdots X_{i_n}.$$

The coefficients $\hat{\mu}(I; \alpha)$ are called *the pro-l Magnus coefficients*.

Lemma

Let α, β be elements in $\mathbb{Z}_l[[\hat{F}(l)]]$ and I be an index. Then the following holds:

$$\hat{\mu}(I;\alpha\beta) = \sum_{I=JK} \hat{\mu}(J;\alpha)\hat{\mu}(K;\beta).$$

(Proof omitted)

Fix $m = l^e (e \ge 1)$.

Applying mod m to the Magnus isomorphism, *the mod m Magnus isomorphism* is obtained:

$$M_m: \mathbb{Z}/m\mathbb{Z}[[\hat{F}(l)]] \longrightarrow \mathbb{Z}/m\mathbb{Z}\langle\langle X_1, \ldots, X_r \rangle\rangle.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Definition

Let α be an element in $\mathbb{Z}_l[[\hat{F}(l)]]$.

The mod m Magnus expansion of α is defined by the image of the mod m Magnus isomorphism

$$M_m(\alpha) = \epsilon_{\mathbb{Z}/m\mathbb{Z}[[\hat{F}(l)]]}(\alpha) + \sum_{\substack{I=(i_1\dots i_n)\\1\leq i_1,\dots,i_n\leq r}} \mu_m(I;\alpha)X_I, \quad X_I := X_{i_1}\cdots X_{i_n}.$$

The coefficients $\mu_m(I; \alpha)$ are called *the mod m Magnus coefficients*.

1 Introduction

- 2 Koch's Theorem
- 3 Magnus Expansion

4 Extending Legendre symbol to Rédei Symbol

We keep the same conditions as in Koch's theorem.

Koch's theorem(Recap)

Let l be a fixed prime number and let $S = \{p_1, \dots, p_r\}$ be a set of r distinct prime numbers such that $p_i \equiv 1 \mod l(1 \le i \le r)$. Let $e_S := \max \{e \mid p_i \equiv 1 \mod l^e (1 \le i \le r)\}$ and fix $m = l^e (1 \le e \le e_S)$.

(i) $G_S(l)$ is a pro-l group and has the following presentation:

$$G_S(l) \cong \left\langle x_1, \cdots, x_r \mid x_1^{p_1-1} [x_1, y_1] = \cdots = x_r^{p_r-1} [x_r, y_r] = 1 \right\rangle,$$

where x_i , y_i represent τ_i , σ_i , respectively.

イロト イヨト イヨト ・

Koch's Theorem(Recap)

(ii) There exists $\mathrm{lk}\,(p_i,p_j)\in\mathbb{Z}_l$ for i
eq j such that

$$\sigma_j \equiv \prod_{i \neq j} \tau_i^{\operatorname{lk}(p_i, p_j)} \mod [G_S(l), G_S(l)].$$

(iii) Define $\operatorname{lk}_m(p_i,p_j) \in \mathbb{Z}/m\mathbb{Z}$ by $\operatorname{lk}(p_i,p_j) \mod m$. Then

$$\zeta_m^{\mathrm{lk}_m(p_i,p_j)} = \left(\frac{p_j}{p_i}\right)_m$$

holds, where $\left(\frac{*}{p_i}\right)_m$ is the m-th power residue symbol in \mathbb{Q}_{p_i} .

Definition

Let

$$\hat{M}(y_i) = 1 + \sum \hat{\mu}(Ii)X_I,$$

be the pro-l Magnus expansion of y_i , where $\hat{\mu}(Ii) := \hat{\mu}(I; y_i)$. The coefficient $\hat{\mu}(Ii)$ is called *the l-adic Milnor number*.

Let

$$M_m(y_i) = 1 + \sum \mu_m(Ii)X_I,$$

be the mod m Magnus expansion of y_i , where $\mu_m(Ii) := \mu_m(I; y_i)$. The coefficient $\mu_m(Ii)$ is called *the mod m Milnor number*.

Proposition

Let $\mu_m(ij)$ be the mod m Milnor number. Then

$$S_m^{\mu_m(ij)} = \left(\frac{p_j}{p_i}\right)_m$$

holds, where ζ_m is given in the Koch's theorem.

Proof) In $G_S(l)$, each y_i represent σ_i . By Koch's theorem (ii), $\sigma_j \equiv \prod_{i \neq j} \tau_i^{\operatorname{lk}(p_i, p_j)} \mod [G_S(l), G_S(l)]$. Applying Magnus isomorphism, $\hat{M}(y_j) = 1 + \sum_{i \neq j} \operatorname{lk}(p_i, p_j) X_i + \dots$. Therefore $\operatorname{lk}(p_i, p_j) = \mu(ij)$.

Applying this to Koch's theorem (iii), we get the result.

When m = 2, the equality is the case of the classical Legendre symbol:

$$(-1)^{\mu_2(ij)} = \left(\frac{p_j}{p_i}\right).$$

We can generalize this by extending 2-index to n-index.

Definition

Define the n-tuple multiple Legendre symbol for prime numbers p_1, \ldots, p_n with each $p_i \equiv 1 \mod 4$ by

$$[p_1,\ldots,p_n] := (-1)^{\mu_2(1\cdots n)}$$

under the assumption that all $\mu_2(I) = 0$ for |I| < n.

Rédei suggested the Rédei symbol as follows.

We will show that the Rédei symbol is the 3-tuple multiple Legendre symbol.

Let l=2 and let $S:=\{p_1,p_2,p_3\}$ be a triple of distinct prime numbers such that

$$p_i \equiv 1 \mod 4, \quad \left(\frac{p_j}{p_i}\right) = 1 \quad (1 \le i \ne j \le 3).$$

Note that this condition is equal to the one in the 3-tuple multiple Legendre symbol.

Set $k_i = \mathbb{Q}\left(\sqrt{p_i}\right) (i = 1, 2).$

Lemma

- (i) There is $\alpha_2 \in \mathcal{O}_{k_1}$ such that the following conditions hold: (1) $N_{k_1/\mathbb{Q}}(\alpha_2) = p_2 z^2$ (z is a non-zero integer) (2) $N(d_{k_1(\sqrt{\alpha_2})/k_1}) = p_2$ ($d_{k_1(\sqrt{\alpha_2})/k_1}$ is the relative discriminant).
- (ii) Let \mathfrak{p}_3 be a prime ideal of \mathcal{O}_{k_1} over p_3 . For such an α_2 in (i), one has the Frobenius automorphism $\sigma_{\mathfrak{p}_3} \in \operatorname{Gal}(k_1(\sqrt{\alpha_2})/k_1)$, since \mathfrak{p}_3 is unramified in $k_1(\sqrt{\alpha_2})/k_1$.

(iii) $\sigma_{\mathfrak{p}_3}$ is independent of the choices of α_2 and \mathfrak{p}_3 .

(Proof omitted)

Definition

With the notation of previous lemma, the Rédei Symbol is defined by

$$[p_1, p_2, p_3]_R = \begin{cases} 1 & \text{if } \sigma_{\mathfrak{p}_3} = \operatorname{id}_{k_1(\sqrt{\alpha_2})} \\ -1 & \text{otherwise} \end{cases}$$

= ▶ < ≡ ▶ ≡ √ < (~ 26 / 35

Rédei Symbol

Let
$$\alpha_1 := \alpha_2 + \bar{\alpha}_2 + 2\sqrt{p_2}z = \left(\sqrt{\alpha_2} + \sqrt{\bar{\alpha}_2}\right)^2 \in k_2$$
 and $k := k_1k_2\left(\sqrt{\alpha_2}\right) = \mathbb{Q}\left(\sqrt{p_1}, \sqrt{p_2}, \sqrt{\alpha_2}\right).$

Then k/\mathbb{Q} is a Galois extension with Galois group as D_4 and it is unramified outside p_1, p_2, ∞ .

Figure: The intermediate fields of k/\mathbb{Q}

Define $s, t \in \operatorname{Gal}(k/\mathbb{Q})$ by

$$s(\sqrt{p_1}) = \sqrt{p_1}, s(\sqrt{p_2}) = -\sqrt{p_2}, s(\sqrt{\alpha_2}) = \sqrt{\alpha_2}$$

$$t(\sqrt{p_1}) = -\sqrt{p_1}, t(\sqrt{p_2}) = -\sqrt{p_2}, t(\sqrt{\alpha_2}) = -\sqrt{\bar{\alpha}_2}.$$

The Galois group $\operatorname{Gal}(k/\mathbb{Q})$ is then generated by s, t and the relations are given by

$$s^2 = t^4 = 1, \quad sts^{-1} = t^{-1}$$

The subfields $k_1(\sqrt{\alpha_2})$ and $\mathbb{Q}(\sqrt{p_1p_2})$ correspond to $\langle s \rangle$ and $\langle t \rangle$ respectively, and the subfields $k_1k_2 = \mathbb{Q}(\sqrt{p_1}, \sqrt{p_2})$ and $k_2(\sqrt{\alpha_1})$ correspond to $\langle t^2 \rangle$ and $\langle st \rangle$ respectively.

By the assumption, p_3 is completely decomposed in the extension k_1k_2/\mathbb{Q} . Let \mathfrak{P}_3 be a prime ideal in k_1k_2 over p_3 .

Since \mathfrak{P}_3 is decomposed in k/k_1k_2 if and only if \mathfrak{p}_3 is decomposed in $k_1\left(\sqrt{\alpha_2}\right)/k_1$, we get from the definition

$$[p_1, p_2, p_3]_R = \begin{cases} 1 & \sigma_{\mathfrak{P}_3} = \mathrm{id}_k \\ -1 & \mathrm{otherwise} \end{cases}$$

Since $k \subset \mathbb{Q}_{\bar{S}}(2)$, we have the canonical projection $\psi: G_S(2) \to \operatorname{Gal}(k/\mathbb{Q}).$

Let $\hat{F}(2)$ be the free pro-2 group on x_1, x_2, x_3 representing τ_1, τ_2, τ_3 and let $\pi : \hat{F}(2) \to G_S(2)$ be the canonical projection.

Define $\varphi: \hat{F}(2) \to \operatorname{Gal}(k/\mathbb{Q})$ by $\varphi:=\psi \circ \pi$.

Recall the definition of τ_i with l = 2:

$$\tau_i(-1) = -1, \quad \tau_i(\sqrt{p_i}) = -\sqrt{p_i}.$$

From this, we get

$$\varphi(x_1) = st, \quad \varphi(x_2) = s, \quad \varphi(x_3) = 1.$$

 and

$$\varphi(x_1)^2 = \varphi(x_2)^2 = 1, \varphi(x_1x_2)^4 = 1, \varphi(x_3) = 1.$$

Theorem

Under the conditions so far, the equality holds:

$$(-1)^{\mu_2(123)} = [p_1, p_2, p_3]_R,$$

which implies that

$$[p_1, p_2, p_3] = [p_1, p_2, p_3]_R.$$

Proof) Recall that the definition of the Rédei Symbol is

$$\left[p_1, p_2, p_3\right]_R = \begin{cases} 1 & \sigma_{\mathfrak{P}_3} = \mathrm{id}_k \\ -1 & \text{otherwise} \end{cases} .$$

The Frobenius automorphism $\sigma_{\mathfrak{P}_3}$ at p_3 is represented by y_3 in $G_S(2)$. Applying φ to each condition, we obtain

$$\varphi(y_3) = \begin{cases} 1 & [p_1, p_2, p_3]_R = 1 \\ t^2 = \varphi((x_1 x_2)^2) & [p_1, p_2, p_3]_R = -1 \end{cases}$$

٠

Proof)(Continued) Since $\operatorname{Ker}(\varphi)$ is generated as a normal subgroup of $\hat{F}(2)$ by $x_1^2, x_2^2, (x_1x_2)^4, x_3$,

$$M_2(x_1^2) = (1 + X_1)^2 = 1 + X_1^2$$

$$M_2(x_2^2) = (1 + X_2)^2 = 1 + X_2^2,$$

$$M_2((x_1x_2)^4) = ((1 + X_1)(1 + X_2))^4 \equiv 1 \mod \deg \ge 4,$$

$$M_2(x_3) = 1 + X_3.$$

Therefore $\mu_2((1); *), \mu_2((2); *)$ and $\mu_2((12); *)$ take their values 0 on $\operatorname{Ker}(\varphi)$.

Main Theorem

Proof)(Continued)
If
$$\varphi(y_3) = 1, \mu_2(123) = \mu_2((12); y_3) = 0$$
 by $y_3 \in \operatorname{Ker}(\varphi)$.
If $\varphi(y_3) = t^2 = \varphi((x_1x_2)^2)$, we can write $y_3 = (x_1x_2)^2 f, f \in \operatorname{Ker}(\varphi)$.

Then comparing the coefficients of X_1X_2 in

$$M_2(y_3) = M_2\left((x_1x_2)^2\right)M_2(f),$$

we have

$$\mu_2(123) = \mu_2((12); y_3)$$

= $\mu_2((12); (x_1x_2)^2) + \mu_2((12); f)$
+ $\mu_2((1); (x_1x_2)^2) \mu_2((2); f)$
= 1

æ

イロト イヨト イヨト イヨト