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We can observe the following similarities between knots and prime
numbers.

Knot side Prime side
Links Primes
Galois group

Link group of L

with restricted ramification in S
GL(M) =m(M\L)

Gs(k) = m (Spec (Ok) \S)
Linking number 1k(L, K) Legendre symbol (%)

Ik(L, K) = Ik(K, L) (g) — (%’) (p,q = 1 mod 4)
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Let S = {p1,- - ,pn} be a finite set of primes.

We fix an embedding of Q into an algebraic closure of @, and a prime
number [.

Let Qg(I) be the maximal [-extension of Q unramified outside S.

The group Gg(l) is defined by

Gs(l) == Gal(Q3(1)/Q) -

Proposition

Gs(l) is a pro-l group.

(Proof omitted)
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Koch's Theorem

Let [ be a fixed prime number and let S = {p1,--- ,p,} be a set of
distinct prime numbers such that p; = 1 mod I(1 < i < 7).

Let eg :=max{e|p; = 1mod (1 <i<r)}, m=1°(1 <e<eg).

Choose an embedding of Q into Q.

Fix a primitive [-th root of unity, and define (;» € Q by a primitive ["-th
root of unity such that ¢}, = (-« (t > s).

Gs(l) = Gal (Qg(1)/Q) is generated by the monodromy 7; at p; and the
Frobenius automorphism o; at p;, defined by
Ti (Qn) = Qn, 7 (WDi) = G Wi,
0i (Gn) = G, 01 (W/pi) = V/pi

(Proof omitted)



Koch's Theorem

Koch's theorem

(i) Gs(1) has the following presentation:

GS(l) = <SL‘17 L, Xy | '1"1101_1 [xhyl] - xgr_l [xrvyr] = 1>7

where x;, y; represent 7;, o;, respectively.

That is, Gg(1) is a quotient of F'({), the pro-l completion of the free group
F on words z1,--- , .

Remark. The words y;'s can be expressed by z;'s.
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Koch's Theorem

Koch's Theorem(continued)

(ii) There exists 1k (p;, pj) € Z; for i # j such that

g; = HT;k(pi,pj) mod [GS(Z)a GS(Z)]
i#j

(iii) Define 1k, (pi,p;) € Z/mZ by 1k (p;, p;) mod m. Then

lkm(piapj) _ pj
Cm ==
Pi)m

holds, where (F) is the m-th power residue symbol in Q,,.
/' m

(Proof omitted)
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Complete Group Algebra

Let SR be a compact complete local ring and & be a pro-finite group.
R[[B]] is the complete group algebra of & over A.

A continuous homomorphism f : & — §) of pro-finite groups induces a
continuous homomorphism f : R[[&]] — R][[$]] of completed group
algebras.

When §) is the trivial group {e}, the induced map denoted by
exjlo]) : R[[G]] = R,

is called the augmentation map.

A~

We will discuss Z;[[F'(1)]].

11/35



Magnus Isomorphism

Let Z; ((X1,...,X,)) be the algebra of non-commutative formal power
series of variables X1, ..., X, over Z,

Y i Xy Xy 020,040, €7

1<,y in <r
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Magnus Isomorphism

Let F' be the free group on word z1, ..., x., F(l) be a pro-l completion of
F.

Define the homomorphism M : F — Z; ({(Xy,..., X,))” by
M (x;) =1+ X,
M(z;Y)=1-X;+ X7 = (1<i<r).
Extending to Z;[[F'(1)]], we obtain a continuous Z;-algebra homomorphism

M :Z[[F(D)] — Zy ((X1,..., X)) .

Proposition

M is an isomorphism of Z;-algebra, called the pro-I Magnus isomorphism.

(Proof omitted)
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Magnus Expansion

Let « be an element in Z;[[F(1)]].

The pro-l Magnus expansion of « is defined by the image of the pro-I
Magnus isomorphism

M(a) = GZZ[[F(l)”(a) + Z L)Xy, Xri=Xi X5,

T=(i1..sin)
1<y ,nyin <

The coefficients [i(I; «) are called the pro-l Magnus coefficients.
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Property of Magnus Coefficients

Let «, B be elements in Z;[[F'(1)]] and I be an index.
Then the following holds:

IaB) = > (s a)i(K; B).

I=JK

(Proof omitted)
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Mod m Magnus Expansion

Fix m =1°(e > 1).

Applying mod m to the Magnus isomorphism, the mod m Magnus
isomorphism is obtained:

M, : Z)mZ[[F(1)]] — Z/mZ ((X1,...,X,)).
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Mod m Magnus Expansion

Let « be an element in Z;[[F(1)]].

The mod m Magnus expansion of « is defined by the image of the mod m
Magnus isomorphism

My (a) = GZ/mZ[[F(l)]](a) + Z (L) X, Xpi=X;, - X,

T=(i1..sin)
1<in,nyin <

The coefficients pu,,,(I; a) are called the mod m Magnus coefficients.
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Recap

We keep the same conditions as in Koch's theorem.

Koch's theorem(Recap)

Let [ be a fixed prime number and let S = {p1,--- ,p,} be a set of
distinct prime numbers such that p; = 1 mod I(1 < i < 7).

Let es ;= max{e | p; = 1 mod (1 <i <r)} and fix
m=10°(1<e<eg).

(i) Gs(1) is a pro-I group and has the following presentation:

Gs(l) = <«T17 a2 ] = = 2P e, ] = 1>7

where x;, y; represent 7;, o;, respectively.
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Recap

Koch's Theorem(Recap)
(i) There exists 1k (p;, pj) € Z; for i # j such that

;= HTZ.lk(pi’pj) mod [Gs(1),Gs(1)].
i#]

(iii) Define 1k, (pi,p;) € Z/mZ by 1k (p;, p;) mod m. Then

dsm(pupj) _ (&)
Pi)m

holds, where (p%) is the m-th power residue symbol in Q,,.

m
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Milnor Number

Definition
Let

NE(yi) =1+ 3 alIi) X,

be the pro-l Magnus expansion of y;, where [i(17) := f(I;y;).
The coefficient fi(13) is called the l-adic Milnor number.

Let
Mo (ys) = 1+ Y pm (I8 X7,

be the mod m Magnus expansion of y;, where i, (Ii) := pim (15 ;).
The coefficient pi,,,(I7) is called the mod m Milnor number.
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Milnor Number

Proposition

Let ., (ij) be the mod m Milnor number. Then

¢hm i) — (&)
" Di)m

holds, where (,,, is given in the Koch’s theorem.

Proof) In Gg(l), each y; represent o;.

By Koch's theorem (ii), o =[], ., Tz-lk(p“pj) mod [Gg(1),Gs(1)].
Applying Magnus isomorphism, M (yj) =1+ Z#j Ik (ps, pj) Xi +....
Therefore 1k (p;, pj) = p(ij).

Applying this to Koch's theorem (iii), we get the result.
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The n-tuple multiple Legendre symbol

When m = 2, the equality is the case of the classical Legendre symbol:

(—1)k2(id) = (Z) _

We can generalize this by extending 2-index to n-index.

Definition

Define the n-tuple multiple Legendre symbol for prime numbers p1, ..., p,
with each p; =1 mod 4 by

[pl, o ,pn] = (_1)#2(1..%)

under the assumption that all po(I) = 0 for |I] < n.

.
23/35



Rédei Symbol

Rédei suggested the Rédei symbol as follows.

We will show that the Rédei symbol is the 3-tuple multiple Legendre
symbol.

Let [ =2 and let S := {p1,p2,p3} be a triple of distinct prime numbers
such that

pi =1 mod 4, (pj>:1 (I<i#j<3).
pi

Note that this condition is equal to the one in the 3-tuple multiple
Legendre symbol.

Set ki = Q (vpi) (i = 1,2).
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Rédei Symbol

(i) There is ag € Oy, such that the following conditions hold:
(1) Ny, /g (a2) = p2z® (2 is a non-zero integer)
(2) N(dy, (/az)/k) = P2 (diy(az)/k, is the relative discriminant).

(ii) Let ps be a prime ideal of O, over p3. For such an as in (i), one has
the Frobenius automorphism oy, € Gal (k1 (y/az) /k1), since p3 is
unramified in k; (,/ag) k1.

(iii) oy, is independent of the choices of s and ps.

(Proof omitted)
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Rédei Symbol

Definition

With the notation of previous lemma, the Rédei Symbol is defined by

1 if oy, =idy. (/&
[p1,p2,p3]p = bs = Thilvam)
—1 otherwise
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Rédei Symbol

Let a1 := ag + Qo + 2/p2z = (,/042 + \/072)2 € ko and

= kiks (yaz) = Q (1, /P2, VO2).
Then k/Q is a Galois extension with Galois group as Dy and it is
unramified outside p1, p2, co.

Figure: The intermediate fields of k/Q
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Rédei Symbol

Define s,t € Gal(k/Q) by

s (VP1) = VP18 (Vp2) = =2, s (Vaz) = Vo
t(vp1) = =Pt (Vp2) = =2, t (Vo) = —Vae.

The Galois group Gal(k/Q) is then generated by s,t and the relations are
given by
2 =tt= 1, sts~t=1¢71

The subfields ki (y/az2) and Q (y/p1p2) correspond to (s) and (t)

respectively, and the subfields k1ko = Q (\/pT, \/]72) and ko (\/071)
correspond to (t2) and (st) respectively.



Rédei Symbol

By the assumption, ps is completely decomposed in the extension k1ka/Q.
Let B3 be a prime ideal in k1ky over ps.

Since B3 is decomposed in k/k1ko if and only if ps is decomposed in
k1 (,/042) /k1, we get from the definition

1 op, = idg

—1  otherwise

[plaPZaPB]R:{
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Rédei Symbol

Since k C Qg(2), we have the canonical projection
Y Gs(2) — Gal(k/Q).

Let F(%) be the free pro-2 group on x1,x2, x3 representing 71, 7o, 73 and
let 7 : F'(2) — Gs(2) be the canonical projection.

Define ¢ : F(2) — Gal(k/Q) by ¢ := ¢ om.
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Rédei Symbol

Recall the definition of 7; with [ = 2:

(1) =-1, 7(Vpi) = =i

From this, we get

e (1) =st, p(z2)=s, ¢(x3)=1
and
® (:c1)2 = go(xg)Z =1,¢ (x1x2)4 =1,p(x3) =1
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Main Theorem

Under the conditions so far, the equality holds:

(_1)M2(123) = [p17p27p3]R )

which implies that

[plap?vp?)] = [pl’p27p3]R'
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Proof) Recall that the definition of the Rédei Symbol is

1 op, =idg

(1, P2, 3] R = {_1 otherwise

The Frobenius automorphism o, at p3 is represented by y3 in G5(2).

Applying ¢ to each condition, we obtain

¢ (y3) = {1 [p1,p2,p3lr =1 |
t2 = w(($1I2)2) [pl,p27p3]R =1
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Proof)(Continued) Since Ker(yp) is generated as a normal subgroup of
F(Z) by .’E%, l’%, (551932)4 » L3,

M (23) = (1+ X1)* =1+ X7}

My (3) = (1+X2)* =1+ X3,
Ms ((z122) > (14 X1) (14 X2))* =1 mod deg > 4,
M (23) =14 X3.

Therefore pa((1); %), u2((2); %) and p2((12);*) take their values 0 on
Ker(p).
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Proof)(Continued)
If o (y3) =1, 12(123) = p2 ((12); y3) = 0 by y3 € Ker(y).

If o(y3) =t>=¢ ((x1$2)2>, we can write y3 = (x1x2)2 f, f € Ker(yp).
Then comparing the coefficients of X X5 in
My (y3) = Mo ((w12)°) M),
we have
p2(123) = p2 ((12); y3)
= 2 ((12): (@122)°) + r2((12); f)
+ po <(1); (3315172)2) 12((2); f)
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