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• Motivation for cluster algebras from total positivity;

• An example of a cluster structure in SL3 ℂ ;

• Laurent phenomenon;

• Connection between cluster algebras and Poisson geometry;

• How to construct a cluster structure using Poisson geometry;

• A class of Belavin-Drinfeld Poisson brackets;

• Program on constructing cluster structures compatible with Belavin-
Drinfeld brackets;

• A list of some open problems in cluster theory;

• (time permissible) 𝒜-𝒳 cluster duality and quantization

Plan



A totally positive story

Def. An 𝑛 × 𝑛 matrix 𝐴 is totally positive if all its minors are positive.
(consider matrices with real entries)

Def. A test for total positivity is a minimal collection of minors such that 
if they are positive on a matrix 𝐴, then 𝐴 is totally positive.

Example. 𝑛 = 2

𝐴 =
𝑎 𝑏
𝑐 𝑑

𝑎𝑑 = 𝑏𝑐 + det 𝐴

Two tests:

{𝑎, 𝑏, 𝑐, det 𝐴} {𝑑, 𝑏, 𝑐, det 𝐴}

(organize the tests into an exchange graph; the edge represents the 
exchange relation: one can replace a with d and obtain a new test)



Example. 𝑛 = 3 𝑋 =

𝑥11 𝑥12 𝑥13

𝑥21 𝑥22 𝑥23

𝑥31 𝑥32 𝑥33

{det 𝑋 ,  det
𝑥22 𝑥23

𝑥32 𝑥33
,  𝑥33,

⋅ ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅

(schematic representation)

(trailing minors)

𝑥13,  det
𝑥12 𝑥13

𝑥22 𝑥23
,      𝑥23,

⋅ ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅

(flag minors)

𝑥31,  det
𝑥21 𝑥22

𝑥31 𝑥32
,      𝑥32}

⋅ ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅

(flag minors)

Can never be replaced with 
another minor to yield a new 
test (future frozen variables)

Can be replaced with 
another minor to yield a new 
test (future cluster variables)

An example of a test:

det
𝑥22 𝑥23

𝑥32 𝑥33

In this test, the minor

cannot be replaced with 
another minor of 𝑋 to yield a 
test; however, it appears in 
some other tests where it can 
be replaced with a minor.



Example continued.  Some exchange relations.

{det 𝑋 ,  det
𝑥22 𝑥23

𝑥32 𝑥33
, 𝑥33,

𝑥13,  det
𝑥12 𝑥13

𝑥22 𝑥23
,  𝑥23,

𝑥31,  det
𝑥21 𝑥22

𝑥31 𝑥32
,  𝑥32}

Why do we get a new test? If all minors in the test are already known to be 
positive and we have not yet checked the minor 𝑥32, we see that it is positive if 

and only if det
𝑥21 𝑥23

𝑥31 𝑥33
 is positive (see the exchange relation); hence, a new 

collection of minors is a test if and only if the current one is a test.

{det 𝑋 ,  det
𝑥22 𝑥23

𝑥32 𝑥33
, 𝑥33,

𝑥13,  det
𝑥12 𝑥13

𝑥22 𝑥23
,  𝑥23,

𝑥31,  det
𝑥21 𝑥22

𝑥31 𝑥32
, det

𝑥21 𝑥23

𝑥31 𝑥33
}

A new test:

𝑥32 ⋅ det
𝑥21 𝑥23

𝑥31 𝑥33
= det

𝑥22 𝑥23

𝑥32 𝑥33
𝑥31 + det

𝑥21 𝑥22

𝑥31 𝑥32
𝑥33

(an exchange relation for 𝑥23 can be 
obtained via transposing 𝑋 in the 
exchange relation for 𝑥32)

(replaces 𝑥32)

𝑥33 ⋅ 𝑥22 = det
𝑥22 𝑥23

𝑥32 𝑥33
+ 𝑥23𝑥32

(replaces 𝑥33)

(short Plücker relation)



An aesthetical issue 
The exchange graph is not regular.

(in other words, different tests have different 
numbers of minors that can be replaced)

Question. Is there a framework that makes the exchange graph regular?

Answer (by Fomin & Zelevinsky). Cluster algebras.

det 𝑋

𝑥12 𝑥13

𝑥22 𝑥23

𝑥21 𝑥22

𝑥31 𝑥32

𝑥13

𝑥23

𝑥33𝑥31 𝑥32

𝑥22 𝑥23

𝑥32 𝑥33

Def. A quiver is a directed multigraph with 
no loops and 2-cycles. (                 is not allowed)

Def. Collection of functions  +  Quiver.

extended cluster

extended seed

Def. frozen vertex 
(the attached function is a frozen variable)

mutable vertex 
(the attached function is a cluster variable)(the quiver encodes the exchange relations)

(det is dropped for saving space)

(Seed/cluster vs Extended seed/cluster: a cluster contains only 
cluster variables, whereas an extended cluster contains both cluster 
and frozen variables. Not much of a difference, b/c frozen variables 
never change, and they are always ‘in the background’)



Mutation (by example)
A mutation is an involutive operation on (extended) seeds: 

• Replaces a chosen cluster variable with a new one;
• Updates the quiver.

det 𝑋

𝑥12 𝑥13

𝑥22 𝑥23

𝑥21 𝑥22

𝑥31 𝑥32

𝑥13

𝑥23

𝑥33𝑥31 𝑥32

𝑥22 𝑥23

𝑥32 𝑥33

𝑥32 ⋅ det
𝑥21 𝑥23

𝑥31 𝑥33
= det

𝑥22 𝑥23

𝑥32 𝑥33
𝑥31 + det

𝑥21 𝑥22

𝑥31 𝑥32
𝑥33

A mutation (or exchange) relation for 𝑥32:

𝑥33

det 𝑋

𝑥12 𝑥13

𝑥22 𝑥23

𝑥21 𝑥22

𝑥31 𝑥32
𝑥23

𝑥31

𝑥22 𝑥23

𝑥32 𝑥33

𝑥21 𝑥23

𝑥31 𝑥33

𝑥13Mutation at 𝑥32

A new cluster variable 
that replaces 𝑥32



New tests for total positivity

det 𝑋

𝑥12 𝑥13

𝑥22 𝑥23

𝑥21 𝑥22

𝑥31 𝑥32

𝑥13

𝑥23

𝑥33𝑥31 𝑥32

𝑥22 𝑥23

𝑥32 𝑥33

(some arrows are dashed only for readability)

det 𝑋

𝑥12 𝑥13

𝑥22 𝑥23

𝑥21 𝑥22

𝑥31 𝑥32

𝑥13

𝑥23

𝑥33𝑥31 𝑥32

det
𝑥22 𝑥23

𝑥32 𝑥33
⋅ 𝑥32 det

𝑥11 𝑥13

𝑥21 𝑥23
− 𝑥31 det

𝑥12 𝑥13

𝑥22 𝑥23
=

= 𝑥23𝑥32 det 𝑋 + det
𝑥12 𝑥13

𝑥22 𝑥23
det

𝑥21 𝑥22

𝑥31 𝑥32
𝑥33

Cluster theory produces a new test; however, the new function is not a minor!

Not a short Plücker relation! But it is a mutation relation.

(in total, there are 16 cluster variables, 
2 of which are not minors of 𝑋; there 
are 50 distinct seeds)

Mutation at det
𝑥22 𝑥23

𝑥32 𝑥33



Algebras and Laurent phenomenon
Let 𝐶 be a cluster structure.

Def. Upper cluster algebra

ҧ𝒜 𝐶 ≔ ሩ

all 𝐱 in C

ℤ 𝑥1
±1, … , 𝑥𝑁

±1, 𝑥𝑁+1, … , 𝑥𝑁+𝑀 𝑥𝑖 ∈ 𝒙].

Def. Cluster algebra 𝒜 𝐶 ≔  ℤ  all cluster and frozen variables from 𝐶 .

Theorem (Laurent Phenomenon). 𝒜 𝐶 ⊆ ҧ𝒜 𝐶 .

That is, any cluster variable can be written as a Laurent polynomial in 
terms of any cluster with coefficients in frozen variables.

Moreover, the Laurent polynomials in the theorem can be 
chosen with nonnegative coefficients.

(M. Gross, P. Hacking, S. Keel, M. Kontsevich, 2015)

(Fomin, Zelevinsky, 2001).



An illustration of the Laurent phenomenon

det 𝑋

𝑥12 𝑥13

𝑥22 𝑥23

𝑥21 𝑥22

𝑥31 𝑥32

𝑥13

𝑥23

𝑥33𝑥31 𝑥32

𝑥22 𝑥23

𝑥32 𝑥33

det 𝑋

𝑥12 𝑥13

𝑥22 𝑥23

𝑥21 𝑥22

𝑥31 𝑥32

𝑥13

𝑥12

𝑥11𝑥31 𝑥21

𝑥11 𝑥12

𝑥21 𝑥22

Some mutation equivalent seed

𝑥11 =
det 𝑋

det
𝑥22 𝑥23

𝑥32 𝑥33

+
det

𝑥21 𝑥22

𝑥31 𝑥32
det

𝑥12 𝑥13

𝑥22 𝑥23
𝑥33

𝑥23𝑥32 det
𝑥22 𝑥23

𝑥32 𝑥33

+
𝑥13 det

𝑥21 𝑥22

𝑥31 𝑥32

𝑥23𝑥32
+

+
𝑥31 det

𝑥12 𝑥13

𝑥22 𝑥23

𝑥23𝑥32
+

𝑥13𝑥31 det
𝑥22 𝑥23

𝑥32 𝑥33

𝑥23𝑥32𝑥33
1) Frozen variables do not appear in the denominators;
2) No negative signs.

Take this variable



Program on cluster algebras
(Fomin, Zelevinsky, 2001): For every interesting variety 𝑉 over a field 𝕂 
in Lie theory, there exists 𝐶 such that 𝕂[𝑉] = 𝒜𝕂 𝐶 .

coordinate ring of 𝑉defined in the field of 
rational functions of 𝑉

Example. 𝕂[Mat𝑛×𝑛] = 𝒜𝕂 𝐶 . (𝑛 = 3 is constructed on the previous slides; in fact, any coordinate 
function 𝑥𝑖𝑗 is a cluster variable in some cluster for this 𝐶)

matrices of size 𝑛 × 𝑛 
over any field

However, most often we are only able to show 𝒪 𝑉 = ҧ𝒜𝕂(𝐶).

Question. How to construct a cluster structure in the first place?

𝒜𝕂 𝐶 ≔ 𝒜 𝐶 ⊗ℤ 𝕂

ҧ𝒜𝕂 𝐶 ≔ ҧ𝒜 𝐶 ⊗ℤ 𝕂



Cluster algebras and Poisson geometry

Def. A Poisson bracket  , : 𝒜 × 𝒜 → 𝒜 is a skew-symmetric bilinear form that 
satisfies the Jacobi identity and the Leibniz rule in each slot.

Jacobi identity: 𝑎, 𝑏, 𝑐 + 𝑏, 𝑐, 𝑎 + 𝑐, 𝑎, 𝑏 = 0

Leibniz rule: 𝑎 ⋅ 𝑏, 𝑐 = 𝑎 𝑏, 𝑐 + 𝑎, 𝑐 𝑏 
∀𝑎, 𝑏, 𝑐 ∈ 𝒜

Def. Elements 𝑎, 𝑏 ∈ 𝒜 are log-canonical if 𝑎, 𝑏 = 𝜔 ⋅ 𝑎𝑏, 𝜔 ∈ 𝕂. 

Setup. 𝒜 ≔ a commutative associative algebra over a field 𝕂.

A subset 𝑆 ⊆ 𝒜 is log-canonical if all elements in 𝑆 are pairwise log-canonical.

Def. A cluster structure is compatible with a Poisson bracket if every extended 
cluster is log-canonical.



det 𝑋

𝑥12 𝑥13

𝑥22 𝑥23

𝑥21 𝑥22

𝑥31 𝑥32

𝑥13

𝑥23

𝑥33𝑥31 𝑥32

𝑥22 𝑥23

𝑥32 𝑥33

A remarkable observation
This initial extended cluster is log-canonical with 
respect to the standard Poisson bracket  , st on 𝐺𝐿3.

(we explain later what standard means)

For example,

{𝑥31, 𝑥32}st= 𝑥31𝑥32, 𝑥23, 𝑥33 st =
1

2
𝑥23𝑥33,

Even more is true:

• Every extended cluster is log-canonical;

• The frozen variables generate Poisson prime ideals in ℂ[GL3]:

𝑓, 𝑔 ∈ (𝑓)  for any frozen 𝑓 and any 𝑔 ∈ ℂ[GL3]; 

Geometrically, this is equivalent to saying that 𝑋 ∈ GL3 𝑓 𝑋 = 0} 
is a union of symplectic leaves of  , st.
(B. Nguyen, K. Trampel, M. Yakimov, 2017)

(M. Gekhtman, M. Shapiro, A. Vainshtein, 2003)

det
𝑥22 𝑥23

𝑥32 𝑥33
, 𝑥33

st
= 0. 



𝐵

How to verify the compatibility with a Poisson bracket?

Setup. (𝒙, 𝑄) the initial extended seed of some cluster structure,
quiver 𝒙 ≔ (𝑥1, … , 𝑥𝑁 , 𝑥𝑁+1, … , 𝑥𝑁+𝑀).

cluster variables frozen variables
Exchange matrix 𝐵:

Adjacency 
matrix of 𝑄

=

0

𝑁

𝑀

𝑀𝑁

Can remember (𝒙, 𝐵) instead of (𝒙, 𝑄).

ℱ ≔ 𝕂(𝑥1, … , 𝑥𝑁+𝑀);

 , : ℱ × ℱ → ℱ a Poisson bracket.

Theorem. Assume that the mutable part of 𝑄 is connected. TFAE:

𝐵Ω = 𝜆𝐼 0

where 𝜆 ∈ 𝕂∗, Ω ≔ 𝜔𝑖𝑗 𝑖,𝑗=1

𝑁+𝑀
, 𝑥𝑖 , 𝑥𝑗 = 𝜔𝑖𝑗𝑥𝑖𝑥𝑗, 𝜔𝑖𝑗 ∈ 𝕂.

𝒙 is log-canonical andii) (compatibility equation)

i) 𝐵 has full rank and the cluster structure is compatible with  , ;

(M. Gekhtman, M. Shapiro, A. Vainshtein, 2003)



How to construct a cluster structure?
Setup. A variety 𝑉 over a field 𝕂, 𝑛 ≔ dim 𝑉.

Empirical algorithm:

1) Introduce a Poisson bracket { , }: 𝕂 𝑉 × 𝕂 𝑉 → 𝕂 𝑉 ;

field of rational 
functions on 𝑉

2) Find a log-canonical family 𝒙 ≔ 𝑥1, … , 𝑥𝑛 , 𝑥𝑖 ∈ 𝒪 𝑉 ;

Set Ω ≔ 𝜔𝑖𝑗 𝑖,𝑗=1

𝑛
, 𝑥𝑖 , 𝑥𝑗 = 𝜔𝑖𝑗𝑥𝑖𝑥𝑗, 𝜔𝑖𝑗 ∈ 𝕂.

3) For frozen variables, choose those 𝑥𝑖  that generate Poisson prime ideals.

This also gives 𝑛 = 𝑁 + 𝑀 where 𝑀 =  # frozen variables.

4) Solve the compatibility equation with respect to an 𝑁 × (𝑁 + 𝑀) matrix 𝐵:

𝐵Ω = [𝐼 0]
(if 𝐵 has entries in ℚ, can multiply both sides by a common denominator)

Then (𝒙, 𝐵) is the initial extended seed for some cluster structure 𝐶 on 𝑉.

(∗)

Remark. If (∗) has many solutions, can introduce extra structures (e.g., a toric action).
This way one extracts a unique solution.



Belavin-Drinfeld classification
Setup. 𝐺 is a simple complex Lie group, 𝔤 ≔ Lie(𝐺), Π a set of simple roots,

𝔥 the Cartan subalgebra, < , > symmetric invariant nondegenerate form on 𝔤.

Def. A Belavin-Drinfeld triple (a BD triple) is 𝚪 ≔ Γ1, Γ2, 𝛾 where Γ1, Γ2 ⊂ Π
and 𝛾: Γ1 → Γ2 is a nilpotent isometry.

Example. 𝔤 = sl4(ℂ),  Γ1 ≔ {2,3}, Γ2 ≔ 1,2 ,  𝛾(2) ≔ 1,  𝛾 3 ≔ 2.

1 2 3

1 2 3

𝛾 is an isometry: 2,3 = 1,2 = ⟨𝛾 1 , 𝛾 2 ⟩ 

𝛾 is nilpotent: 3 ↦ 2 ↦ 1 ∉ Γ1
𝛾 𝛾

(that is, ∀𝛼 ∈ Γ1∃𝑚 > 0 ∶ 𝛾𝑚 𝛼 ∉ Γ1)

𝑅0 + 𝑅0
∗ = id

𝑅0 1 − 𝛾 𝛼 = 𝛼,  𝛼 ∈ Γ1

Compatible cluster structures don’t depend 
on 𝑅0, but the Poisson brackets do.

A Belavin-Drinfeld quadruple (a BD quadruple) is ഥ𝚪 ≔ 𝚪, 𝑅0  where 
𝑅0:  𝔥 → 𝔥 is a linear map that satisfies



Formula for 𝑅:

𝑅 𝑥 =
1

1 − 𝛾
𝜋> 𝑥 −

𝛾∗

1 − 𝛾∗
𝜋< 𝑥 + 𝑅0𝜋0 𝑥 ,

(𝑥 ∈ 𝔤)

Projection onto 𝔟+ 
(upper Borel)

onto 𝔟− onto 𝔥

𝛾 can be extended to a linear map 𝛾: 𝔤 → 𝔤

ഥ𝚪 ≔ Γ1, Γ2, 𝛾, 𝑅0 Solution of CYBE 𝑅

Def. A Classical Yang-Baxter equation (CYBE) is the equation for a linear map 
𝑅: 𝔤 → 𝔤 of the form 

𝑅 𝑥 , 𝑅 𝑦 = 𝑅 𝑅 𝑥 , 𝑦 − 𝑥, 𝑅∗ 𝑦 ,  𝑥, 𝑦 ∈ 𝔤.

Theorem (Belavin-Drinfeld, 1982). Belavin-Drinfeld quadruples ഥ𝚪 ≔ Γ1, Γ2, 𝛾, 𝑅0

parameterize the space of solutions of the CYBE.

Belavin-Drinfeld classification

A Poisson bracket { , }ത𝚪 on 𝐺

𝑅st 𝑥 = 𝜋> 𝑥 + 𝑅0𝜋0 𝑥 .

For ഥ𝚪 ≔ (∅, ∅, ∅ → ∅, 𝑅0):



ഥ𝚪 ≔ Γ1, Γ2, 𝛾, 𝑅0 Solution of CYBE 𝑅

Def. A Classical Yang-Baxter equation (CYBE) is the equation for a linear map 
𝑅: 𝔤 → 𝔤 of the form 

𝑅 𝑥 , 𝑅 𝑦 = 𝑅 𝑅 𝑥 , 𝑦 − 𝑥, 𝑅∗ 𝑦 ,  𝑥, 𝑦 ∈ 𝔤.

Theorem (Belavin-Drinfeld, 1982). Belavin-Drinfeld quadruples ഥ𝚪 ≔ Γ1, Γ2, 𝛾, 𝑅0

parameterize the space of solutions of the CYBE.

Belavin-Drinfeld classification

A Poisson bracket { , }ത𝚪 on 𝐺

Example. Poisson brackets on SL𝑛(ℂ):

∇𝑋𝑓 ≔
𝜕𝑓

𝜕𝑥𝑗𝑖 𝑖,𝑗=1

𝑛

;where < 𝐴, 𝐵 > ≔ trace(AB).

𝑓, 𝑔 ത𝚪 𝑋 ≔ 𝑅 ∇𝑋𝑓 ⋅ 𝑋 , ∇𝑋𝑔 ⋅ 𝑋 − 𝑅 𝑋 ⋅ ∇𝑋𝑓 , 𝑋 ⋅ ∇𝑋𝑔  



More generally, one can associate a Poisson bracket 
to a pair of BD quadruples (ഥ𝚪𝑟 , ഥ𝚪𝑐):

Research program

𝑓, 𝑔 ത𝚪𝑟,ത𝚪𝑐 𝑋 ≔ 𝑅𝑐 ∇𝑋𝑓 ⋅ 𝑋 , ∇𝑋𝑔 ⋅ 𝑋 − 𝑅𝑟 𝑋 ⋅ ∇𝑋𝑓 , 𝑋 ⋅ ∇𝑋𝑔 . 

Conjecture (Gekhtman-Shapiro-Vainshtein, ‘11). 
For any pair of BD quadruples (ഥ𝚪𝑟 , ഥ𝚪𝑐), there exists a (generalized) cluster 
structure 𝒞 in ℂ[𝐺] such that

• 𝒞 is compatible with 𝑓, 𝑔 ത𝚪𝑟,ത𝚪𝑐 ;

• ҧ𝒜ℂ 𝒞 = ℂ[𝐺].

(G = SL𝑛 ℂ )

Remark. • The conjecture extends to some other Poisson varieties (e.g., Drinfeld 
doubles and dual Poisson-Lie groups);

• 𝒞 does not depend on 𝑅0
𝑟 and 𝑅0

𝑐;
• The conjecture is solved for all aperiodic pairs (𝚪r, 𝚪𝑐).

(aperiodic if 𝑤0𝛾𝑟𝑤0𝛾𝑐
−1 is nilpotent; beyond this case, one encounters 

generalized mutations, and that is the main hurdle to overcome)



An example in GL3 ℂ

det 𝑋

𝑥12 𝑥13

𝑥22 𝑥23

𝑥21 𝑥22

𝑥31 𝑥32

𝑥13

𝑥23

𝑥33𝑥31 𝑥32

𝑥22 𝑥23

𝑥32 𝑥33

det 𝑋

𝑥12 𝑥13

𝑥22 𝑥23

𝑥21 𝑥22

𝑥31 𝑥32
𝑥23

𝑥33𝑥31 𝑥32

𝑥22 𝑥23

𝑥32 𝑥33

𝑥13 𝑥21

𝑥23 𝑥31

Case (𝚪st, 𝚪st) Case (𝚪r, 𝚪𝑐)

𝚪r ≔ {2}, {1}, 2 ↦ 1 , 𝚪c ≔ 𝚪st

𝒰 𝑋 =
1

𝑥21

𝑥31
0

0 1 0
0 0 1

⋅ 𝑋 

Crucial observation: There is a Poisson birational map

𝒰: (GL3 ℂ , { , }st) ⇢ (GL3 ℂ ,  , (𝚪r,𝚪𝑐))

Call the variable 𝑥31 marked: it is 
frozen on the left, not frozen on the 
right, and it is in the denominator!



det 𝑋

𝑥12 𝑥13

𝑥22 𝑥23

𝑥21 𝑥22

𝑥31 𝑥32

𝑥13

𝑥23

𝑥33𝑥31 𝑥32

𝑥22 𝑥23

𝑥32 𝑥33

Case (𝚪st, 𝚪st)

det 𝑋

𝑥12 𝑥13

𝑥22 𝑥23

𝑥21 𝑥22

𝑥31 𝑥32
𝑥23

𝑥33𝑥31 𝑥32

𝑥22 𝑥23

𝑥32 𝑥33

𝑥13 𝑥21

𝑥23 𝑥31

Case (𝚪r, 𝚪𝑐)

𝚪r ≔ {2}, {1}, 2 ↦ 1 , 𝚪c ≔ 𝚪std

An example in GL3 ℂ

The map 𝒰 is also a quasi-isomorphism provided one does 
not mutate at the marked variable 𝑥31. 

For example, 

𝒰−1 ∗ 𝑥23
′ = 𝑥23

′ ⋅ 𝑥31

Mutation on the left

Mutation on the right

Always a monomial in the marked variables



What other quivers look like for GL3 ℂ :

𝚪r ≔ 𝚪c ≔ 𝚪st

𝚪r ≔ {2}, {1}, 2 ↦ 1 , 
𝚪c ≔ 𝚪st

𝚪r ≔ 𝚪st,
𝚪c ≔ {2}, {1}, 2 ↦ 1

𝚪r ≔ 𝚪c ≔ {2}, {1}, 2 ↦ 1



Poisson rational quasi-isomorphism for (𝐺, { , } ത𝚪𝑟,ത𝚪𝑐 )

𝒰 𝑋 ≔ 𝜌𝑟 𝑋𝑊0 + ⋅ 𝑋 ⋅ 𝜌𝑐
∗( 𝑊0𝑋 −)

𝜌𝑟 𝑁+ ≔ ෑ

𝑖≥1

←

𝛾𝑟
𝑖 𝑁+ , 𝜌𝑐

∗ 𝑁− ≔ ෑ

𝑗≥1

→

𝛾𝑐
∗ 𝑗 𝑁− ,

Gauss decomposition:

For a generic 𝑋 ∈ 𝐺, write 𝑋 = 𝑋+𝑋0𝑋− where 𝑋± ∈ 𝒩± and 𝑋0 ∈ ℋ.

Define the maps 𝜌𝑟: 𝒩+ → 𝒩+ and 𝜌𝑐
∗: 𝒩− → 𝒩−:

𝑁± ∈ 𝒩±.

The map 𝒰: 𝐺, 𝜋std ⇢ 𝐺, 𝜋 ത𝚪𝑟,ത𝚪𝑐 :

Theorem (GSV, ‘23). If (𝑟0
𝑟 , 𝑟0

𝑐) are the same for both 𝜋 ത𝚪𝑟,ത𝚪𝑐  and 𝜋std, then 𝒰 is Poisson.

(that is, 𝛾𝑟𝑤0𝛾𝑐
∗𝑤0

−1 is nilpotent)
(Gekhtman-Shapiro-Vainshtein described 𝒰 via Berenstein-Fomin-Zelevinsky 
parameters in their paper (2023); I found later that there is a closed formula)

Statement (proved ‘if’ part; unpublished): 𝒰−1 is rational if and only if (𝚪𝑟 , 𝚪𝑐) is aperiodic.

(Cartan subgroup)

(unipotent radicals of opposite Borels)



Some open problems
1. Why are frozen variables frozen?

A variable is frozen if and only if ?
How to formalize ‘being frozen’?

2. (related) How to unfreeze frozen variables while preserving ҧ𝒜ℂ 𝒞 = ℂ[𝐺] ?
(examples show that variables change as elements of ℂ[𝐺])

3. How to construct cluster structures (or some of their generalizations) 
on non-simply connected algebraic groups?

(nothing is known even for PSL𝑛(ℂ); how to even ask this question properly?)

4. How to quantize cluster structures with compatible with Belavin-Drinfeld brackets?

(For example, there are cluster structures for so-called dual Poisson-Lie groups, and there are 
quantum cluster structures for quantum groups. The relation between dual Poisson-Lie groups and 
quantum groups is known; what about the relation between their cluster structures? And so on)



𝒜-𝒳 cluster duality and quantization

Assume the compatibility condition:

Setup. 𝐶 – cluster structure, ℱ its ambient field,  , : ℱ × ℱ → ℱ a Poisson bracket;

(𝒙, 𝐵) – initial extended seed.
(𝑀 frozen variables, 𝑁 cluster variables in each cluster)

𝐵 ⋅ Ω = [𝐼 0]

Def. A 𝑦-variable is 𝑦𝑘 ≔ ς𝑖=1
𝑁+𝑀 𝑥𝑖

𝑏𝑘𝑖

(∗)

The compatibility condition (∗) is equivalent to

log 𝑦𝑘 , log 𝑥𝑖 = 𝛿𝑖𝑘,  𝑖 ∈ 1, 𝑁 .

No matter what Poisson bracket we started with, if all extended clusters are 
log-canonical, the Poisson bracket between the 𝑦-variables is given by

log 𝑦𝑖 , log 𝑦𝑗 = ቐ
1

−1
0

if 𝑥𝑗 → 𝑥𝑖

if 𝑥𝑖 → 𝑥𝑗

no arrow between 𝑥𝑖  and 𝑥𝑗

Conclusion. Poisson brackets between y-variables !



Example

det 𝑋

𝑥12 𝑥13

𝑥22 𝑥23

𝑥21 𝑥22

𝑥31 𝑥32

𝑥13

𝑥23

𝑥33𝑥31 𝑥32

𝑥22 𝑥23

𝑥32 𝑥33

𝑦22 ≔
det

𝑥12 𝑥13
𝑥22 𝑥23

⋅det
𝑥21 𝑥22
𝑥31 𝑥32

⋅𝑥33

det 𝑋⋅𝑥23⋅𝑥32
 

𝑦22 𝑦23

𝑦32 𝑦33

𝑦23 ≔
det

𝑥22 𝑥23
𝑥32 𝑥33

⋅𝑥13

det
𝑥12 𝑥13
𝑥22 𝑥23

⋅𝑥33

 𝑦32 ≔
det

𝑥22 𝑥23
𝑥32 𝑥33

⋅𝑥31

det
𝑥21 𝑥22
𝑥31 𝑥32

⋅𝑥33

 

𝑦33 ≔
𝑥23⋅𝑥32

det
𝑥22 𝑥23
𝑥32 𝑥33

 

The 𝑦-variables have a different mutation 
pattern. For instance, if we mutate 𝑦33, then 
the 𝑦-variables update as follows:

That is, the new 𝑦-variables are the 𝑦-variables in the extended cluster obtained by mutation at 𝑥33.

This is compatible with the mutation of 𝑥33.

Easy to quantize:

𝒪𝑞 ≔ ℤ[𝑞±1] 𝑌1, 𝑌2, 𝑌3, 𝑌4 𝑌𝑖𝑌𝑗 = 𝑞 log 𝑦𝑖,log 𝑦𝑗 𝑌𝑗𝑌𝑖]

This is an example of a 𝜒-quantum cluster algebra.

𝑦33
′ ≔ 𝑦33

−1 𝑦22
′ ≔ 𝑦22(1 + 𝑦33)

𝑦23
′ ≔ 𝑦23(1 + 𝑦33

−1)

𝑦32
′ ≔ 𝑦32(1 + 𝑦33

−1)



Thank you
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