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1. Zhuy(Vertex Algebra) : Associative algebra.
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1. Zhuy(Vertex Algebra) : Associative algebra.

2. (Choi, Molev, Suh) Constructed new class of vertex algebras,
called the generalized affine W-algebras, and their Zhu
algebras.
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Vertex algebras

A vertex algebra consists of
1. a vector space V/,
2. the vacuum vector |0) € V,
3. and n-th product “(n)+ N E 7,

and they satisfy Vacuum axiom, Borcherds identity, and locality axiom.
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Vertex algebras

A vertex algebra consists of
1. a vector space V/,

2. the vacuum vector |0) € V,

3. and n-th product -(,)-, n € Z,

and they satisfy Vacuum axiom, Borcherds identity, and locality axiom.

ayb,n >0 Lambda bracket [a)b] € V[)]
amb = a1)b Normally ordered product : ab:
a—pyb,n>0 Derivation 0 and : ab:
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Vertex algebras

More precisely,

1. The informations of “(n)y N2> 0, are recorded in the lambda bracket

)\n
[axb] == Zma(n)b a,be V, [axb] € V[)] .
n>0

2. rab::=a_yb.
3. a_p_1)b= L. (0"a)b : for n > 0.

5/23



Vertex algebras

More precisely,

1. The informations of “(n)y N2> 0, are recorded in the lambda bracket

)\n
[axb] == Zma(n)b a,be V, [axb] € V[)] .
n>0

2. rab::=a_yb.
3. a_p_1)b= L. (0"a)b : for n > 0.

To summarize, the data of a vertex algebra can be written in the following ways :
(V,10),+(n):), n€Z, or (V,|0),[x],: :,0).
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Example : Universal affine vertex algebra

g : simple Lie algerba, (- | -) : the Killing form, {a;j};c/ : a basis of g.
For k € C, define

V¥ (g) = Spanc {: (0™a;): - (0™ a;_,) (0™a;) :::’ m>ny>--->ns>0} .
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Example : Universal affine vertex algebra

g : simple Lie algerba, (- | -) : the Killing form, {a;j};c/ : a basis of g.
For k € C, define

Vk(g) = Spanc {: (0™a;): - (0™ a;_,) (0™a;) :::’ m>ny>--->ns>0} .
Define |0) := the element corresponding to s = 0, and
[axb] = [a, b] + k (a|b) A = ag)b + a1y b .
If g = slp = Spanc{e, h, f}, some lambda brackets in V*(sly) are

[exf] = h+ kX, [hre] =2e, [hrh] =2k .
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Hamiltonian operator

Let (V,]0),-(n)-) be a vertex algebra. A diagonalizable operator H: V' — V' is called a
Hamiltonian operator if

A(a(n)b) = A(a) + A(b) —n—1

for any eigenvectors a, b of H. Here, A(a) denotes the eigenvalue of a with respect to H.
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Hamiltonian operator

Let (V,]0),-(n)-) be a vertex algebra. A diagonalizable operator H: V' — V' is called a
Hamlltonlan operator if

A(a(n)b) = A(a) + A(b) —n—1

for any eigenvectors a, b of H. Here, A(a) denotes the eigenvalue of a with respect to H.

In VK(sl,), define

Then
A(e(o)f):A(h):1:0+2—0—1:A(e)+A(f)—0—1,

A(hgyh) = AQk)=0=1+1—-1-1=A(h)+A(h) —1—1.
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Zhu algebra

Let (V,]0),-(n)) be a vertex algebra and H be a Hamiltonian operator. The H-tiwsted
Zhu algebra of V is defined as follows:

Zhuy(V) =V /(0+ H)V .
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Zhu algebra

Let (V,]0),-(n)) be a vertex algebra and H be a Hamiltonian operator. The H-tiwsted
Zhu algebra of V is defined as follows:

Zhuy(V) =V /(0+ H)V .

Let g = sl and H : V¥(g) — V*(g),

Ry

(e) =0,H(h) = h, H(f) = 2f be as before. Then

de=—H(e)=0, Oh=—H(h)=—h, Of=—H(f)=—2f

in Zhup(V*(g)).
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Zhu algebra

Theorem (Zhu, 1996)
Define a multiplication on Zhuy(V) = V /(0 + H)V as follows :

5-5 ::E—I— Z _I];]_(A(a) B 1)H(a)0)b .

J

Then (Zhuy(V),-) is an associative algebra. Moreover,

a-b—b-a= ) (A(aj__1>a(j)b.

J€Z>o

9/23



Let V = VX(sl) and H : V — V be as before. In Zhuy(V), from

[eAf—] = h =+ k)\, [h)\e] — 2e7 [h)\h] = 2k\

and
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Let V = VX(sl) and H : V — V be as before. In Zhuy(V), from

[e)\f] = h =+ k)\, [h)\e] — 2e7 [h)\h] = 2k\

and

we can compute as follows :

[e,fl=h—k, [he]l=2e, [hh] =
Define an algebra homomorphism

U(sly) — Zhuy(V*(sl))
e—~¢€  he— h—k, fsf

then it is an algebra isomorphism.
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VOA

Definition
1. A vector L in a vertex algebra V is called conformal if Lg) = 0, L(y) is
diagonalizable, and
[LaL] = (8 + 2\)L + 1—C2A3 .

2. (V,L) is called a vertex operator algebra (VOA) if V is a vertex algebra, L € V' is
a conformal vector, and they satisfy some additional conditions.
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VOA

Definition
1. A vector L in a vertex algebra V is called conformal if L(O) =0, L(l) is
diagonalizable, and
[LaL] = (8 + 2\)L + 1—C2)\3 .

2. (V,L) is called a vertex operator algebra (VOA) if V is a vertex algebra, L € V' is
a conformal vector, and they satisfy some additional conditions.

v

1. g : simple Lie algebra = the Killing form is non-degenerate = 3 dual basis {a'};c/
of a given basis {a;};¢/ of g.

2. If k # —hV, there is a conformal vector L =", : a;a’ :€ V¥(g). This is known as
the Sugawara construction.

3. If Lis a conformal vector, L) is a Hamiltonian operator.
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Finite W-algebras

Let N be a positive integer and from now on fix g = sl (C).
Consider the left-justified pyramid corresponding to the partition p = (p1,- -+, fim) of N.
For example, for the partitions u = (2,3,4) -9 = N is given by
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Finite W-algebras

Let N be a positive integer and from now on fix g = sl (C).
Consider the left-justified pyramid corresponding to the partition p = (p1,- -+, fim) of N.
For example, for the partitions u = (2,3,4) -9 = N is given by

Define an element e € g corresponding to u by

€= E €ii+1
=1, ,N—1
row,, (1)=row, (i+1)

For example, if = (2, 3, 4), then e = e1n + €34 + e45 + €7 + €78 + ego.
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Finite W-algebras

Define a Z-gradation on g = @, g(i) as follows :

deg(ejj) = col,(j) — col, (i) -

For example, for p=(2,3,4) -9 =N, e13,e31,€16 € 9(0), es6 € g(—2), es5 € g(2).
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Finite W-algebras

Define a Z-gradation on g = @, g(i) as follows :

deg(ejj) = col,(j) — col, (i) -

For example, for p=(2,3,4) -9 =N, e13,e31,€16 € 9(0), es6 € g(—2), es5 € g(2).

Set n, 1= @;.o0(i) and

where x € n}, corresponding to e € g(1).
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Finite W-algebras

Definition
The finite W-algebra is the associative algebra
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Finite W-algebras

Definition
The finite W-algebra is the associative algebra

U(g. 1) := (U(9)/Z.)* ™ = (U()/U(g) (n + x(n) | n € ny))**™ .

Let p=(1,1,---,1). Then e=0and n, =0, so U(sly, n) = U(sln).

Let N =3 and ;= (1,2). Then e = ex3 and n, = Spanc{eis, ex}.
In this case the finite W-algebra is

U(sls, (1,2)) = (U(sl3)/U(sl3) (e13, ep3 4 1)) .
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Affine Walgebras

Suppose p = N is given and n, as before. Define a vertex superalgebra F(n,), called the
free fermion vertex algebra, as follows : as the odd vector superspaces,

F(n,) = ¢, ® "

where ¢y, = {¢n | n €y}, ¢% = {¢™ | men’}.
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Affine Walgebras

Suppose p = N is given and n, as before. Define a vertex superalgebra F(n,), called the
free fermion vertex algebra, as follows : as the odd vector superspaces,

F(n,) = ¢, ® "

where ¢y, = {¢n | n€n,}, ¢" = {¢™ | m € n’}. The vertex superalgebra F(n,) is
freely generated by the elements ¢, and ¢ as a differential algebra with the following
A-brackets : /

[d)n A¢m] = m(n)> [an A¢n’] = [QZ)n;&bm] =0.
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Affine Walgebras

Define the vertex algebra

C¥(g, 1) = V¥(9) © F(n,) = B C (g, w)(7)
i€Z

and its element

* 1 * e*
d:= Z :¢e,- € : +¢X + 5 Z :d)ei ¢ il(z)[e;,ei/] S Ck(g,lu)(l) :

ieS, i,i"eSy

Here, {ei}ics, is a basis of n,,.
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Affine Walgebras

Define the vertex algebra

CH(g, 1) == V*(g) ® F(n,) = D C*(a, )()
i€EZ

and its element

* 1 * e*
d:= Z : (ﬁef € : +¢X + 5 Z : ¢ei ¢ il(z)[e;,ei/] S Ck(g,lu)(l) :

ieS, i,i'eS,

Here, {ei}ics, is a basis of n,,.

1. (do))?: Ck(g, w)(i) — C*(g, w)(i +2) is zero.
2. Ifi #£0, H(C*(g, 1), d(g)) = 0.
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Affine W-algebras

The complex (C¥(g, 11), d(g)) is called the BRST complex.

ker d(O)
Im d(O)

W*(g, 1) := H°(C*(a, 1), d(o)) =

is called the affine W-algebra.

17/23



Affine W-algebras

The complex (C¥(g, 11), d(g)) is called the BRST complex.

ker d(O)

k . 140( k _

is called the affine W-algebra.

1. The conformal vector of V(g) by the Sugawara construction (with some shift)
induces a conformal vector of W*(g, ).

2. (De Sole, Kac) Using the Hamiltonian operator above, Zhuy(W* (g, 1)) = U(g, 1).
In particular, Zhuy(V*(g)) = U(g).
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Historical remarks

Let g be a simple Lie algebra.
1. (Gan, Ginzburg, 2002) U(g, i) is a quantization of Slodowy slice.
2. (De Sole, Kac, 2006) Zhuy(W*(g, 1)) = U(g, 11).

3. (De Sole, Kac, 2006) The cardinality of the set of generators of W*(g, 1) and
U(g, i) is the dimension of g(0).

4. (Premet, 2007) The center of U(g, i) is isomorphic to the center of U(g).

5. (Arakawa, 2011) The center of W (g, ;1) is isomorphic to the center of V¥(g) and it
is trivial unless k = —h".
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Generalized W-algebras

From now on, we fix g = gl and a nilpotent element e € g. Define

a:=g°=ker(ade)Cg.
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Generalized W-algebras

From now on, we fix g = gl and a nilpotent element e € g. Define

a:=g°=ker(ade)Cg.

1. If e=0, then a = gly.
2. ais not reductive in general. Therefore the Killing form on a is degenerate.

3. There is a symmetric invariant bilinear form on a, which recovers the Killing form

when e = 0.
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Generalized W-algebras

There is a basis of a of the form

E,.J(.r) = Z eap |1 <i,j < n and some conditions

row) (a)=i,row) (b)=j
coly(b)—coly(a)=r

for some non-negative integer n and their relation is given by

(3%

D ED = 4B — s4ELT)
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Generalized W-algebras

There is a basis of a of the form

E,.J(.r) = Z eap |1 <i,j < n and some conditions
row) (a)=i,row) (b)=j
coly (b)—coly(a)=r

for some non-negative integer n and their relation is given by

(3%

U‘ 9

Eq] = 0y — L)

Let ub=n.
In the same way as before, from p we can define a nilpotent element e € a and a

Z-gradation
a= @ a(r) .
i€z
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Generalized W-algebras

Theorem (Choi, Molev, Suh)

1. The definition of finite and affine W -algebras for a associated with p is well-defined.
These are called the generalized finite and affine W-algebras and let’s denote
those U(a, ;1) and W*(a, ), respectively.

The cardinality of the set of generators of W*(a, 1) and U(a, ) is the dimension of
a(0).

S

3. When e = 0, then they are original W-algebras.

4. When = (1,1,---,1), then U(a, ) = U(a).

5. When p = (n), then the center of U(a) is isomorphic to U(a, ).

6. When = (1,---,1,2), we can find the explicit formula of the generators of U(a, 1)
and Wk(a, 11).
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Difficulties in this algebras

Recall 1) If there is a conformal vector L in a vertex algebra, L(;) is a Hamiltonian
operator.

Recall 2) From the Sugawara construction, V*(g) has a conformal vector.

Recall 3) There is the conformal vector in W*(g, ;1) induced from the conformal vector in
VE(g).
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Difficulties in this algebras

Recall 1) If there is a conformal vector L in a vertex algebra, L(;) is a Hamiltonian
operator.

Recall 2) From the Sugawara construction, V*(g) has a conformal vector.

Recall 3) There is the conformal vector in W*(g, ;1) induced from the conformal vector in

VE(g).
| W(g. 1) | WH(a,p) |
Conformal vector 0] X
Hamiltonian operator 0] 0]
Why?
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Difficulties in this algebras

Recall 1) If there is a conformal vector L in a vertex algebra, L(;) is a Hamiltonian
operator.

Recall 2) From the Sugawara construction, V*(g) has a conformal vector.

Recall 3) There is the conformal vector in W*(g, ;1) induced from the conformal vector in
VE(g).

| W(g. 1) | WH(a,p) |
Conformal vector 0] X
Hamiltonian operator 0] 0]

Why? It is because a does not admit a “non-degenerate” symmetric invariant bilinear
form.

22/23



Further topics

1. (Gan, Ginzburg, 2002) U(g, 1) is a quantization of Slodowy slice. = What is the
classical limit of U(a, u)?

2. (De Sole, Kac, 2006) Zhuy(W*(g, 1)) = U(g, ). = Also holds for a.

3. (De Sole, Kac, 2006) The cardinality of the set of generators of W*(g, 1) and
U(g, p) is the dimension of g(0).= Also holds for a.

4. (Premet, 2007) The center of U(g, i) is isomorphic to the center of U(g). = Also
holds for a and p = (n)

5. (Arakawa, 2011) The center of W (g, ;1) is isomorphic to the center of V¥(g) and it
is trivial unless k = —h". = Is it also true for a?
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