Zhu algebras of Generalized Walgebras

Dong Jun Choi

Department of Mathematical Sciences Seoul National University Joint work with Alexander Molev, Uhi Rinn Suh

Feburary 10, 2025

1. Zhu_H (Vertex Algebra) : Associative algebra.

1. Zhu_H (Vertex Algebra) : Associative algebra.

2. (Choi, Molev, Suh) Constructed new class of vertex algebras, called the **generalized affine W-algebras**, and their Zhu algebras.

Overview

1. Zhu algebras

- 1.1 Vertex algebras
- 1.2 Example
- 1.3 Hamiltonian operator
- 1.4 Zhu algebra
- 1.5 VOA

2. Walgebras

- 2.1 Finite Walgebras
- 2.2 Affine Walgebras
- 2.3 Historical remarks

3. Generalized Walgebras

- 3.1 Definitions
- 3.2 Difficulties in this algebras
- 3.3 Further topics

Vertex algebras

Definition

A vertex algebra consists of

- 1. a vector space V,
- 2. the vacuum vector $|0
 angle\in V$,
- 3. and *n*-th product $\cdot_{(n)}$, $n \in \mathbb{Z}$,

and they satisfy Vacuum axiom, Borcherds identity, and locality axiom.

Vertex algebras

Definition

A vertex algebra consists of

- 1. a vector space V,
- 2. the vacuum vector $|0
 angle\in V$,
- 3. and *n*-th product $\cdot_{(n)}$, $n \in \mathbb{Z}$,

and they satisfy Vacuum axiom, Borcherds identity, and locality axiom.

Remark

$$a_{(n)}b = egin{cases} a_{(n)}b, n \geq 0 \ a_{(-1)}b \ a_{(-n)}b, n > 0 \end{cases}$$

Vertex algebras

Definition

A vertex algebra consists of

- 1. a vector space V,
- 2. the vacuum vector $|0
 angle\in V$,
- 3. and *n*-th product $\cdot_{(n)}$, $n \in \mathbb{Z}$,

and they satisfy Vacuum axiom, Borcherds identity, and locality axiom.

Remark

$$a_{(n)}b = egin{cases} a_{(n)}b, n \geq 0 \ a_{(-1)}b \ a_{(-n)}b, n > 0 \end{cases}$$

Lambda bracket $[a_{\lambda}b] \in V[\lambda]$ Normally ordered product : ab : Derivation ∂ and : ab : More precisely,

1. The informations of $\cdot_{(n)}$, $n \ge 0$, are recorded in the lambda bracket

$$[a_\lambda b]:=\sum_{n\geq 0}rac{\lambda^n}{n!}a_{(n)}b \qquad a,b\in V,\,\, [a_\lambda b]\in V[\lambda]\;.$$

2.
$$: ab : := a_{(-1)}b$$
.
3. $a_{(-n-1)}b = \frac{1}{n!} : (\partial^n a)b$: for $n \ge 0$.

More precisely,

1. The informations of $\cdot_{(n)}$, $n \ge 0$, are recorded in the lambda bracket

$$[m{a}_\lambda b]:=\sum_{n\geq 0}rac{\lambda^n}{n!}m{a}_{(n)}b \qquad m{a},b\in V,\,\, [m{a}_\lambda b]\in V[\lambda]\;.$$

2.
$$: ab : := a_{(-1)}b$$
.
3. $a_{(-n-1)}b = \frac{1}{n!} : (\partial^n a)b$: for $n \ge 0$.

To summarize, the data of a vertex algebra can be written in the following ways : $(V, |0\rangle, \cdot_{(n)} \cdot), n \in \mathbb{Z}$, or $(V, |0\rangle, [\cdot_{\lambda} \cdot], ::, \partial)$.

Example

 \mathfrak{g} : simple Lie algerba, $(\cdot \mid \cdot)$: the Killing form, $\{a_i\}_{i \in I}$: a basis of \mathfrak{g} . For $k \in \mathbb{C}$, define

$$V^{k}(\mathfrak{g}) = \mathsf{Span}_{\mathbb{C}} \left\{ : (\partial^{n_{1}} a_{i_{1}}) : \cdots : (\partial^{n_{s-1}} a_{i_{s-1}}) (\partial^{n_{s}} a_{i_{s}}) : :: \mid n_{1} \ge n_{2} \ge \cdots \ge n_{s} \ge 0 \right\}$$

Example

 \mathfrak{g} : simple Lie algerba, $(\cdot \mid \cdot)$: the Killing form, $\{a_i\}_{i \in I}$: a basis of \mathfrak{g} . For $k \in \mathbb{C}$, define

$$V^k(\mathfrak{g}) = \operatorname{Span}_{\mathbb{C}} \left\{ : (\partial^{n_1} a_{i_1}) : \cdots : (\partial^{n_{s-1}} a_{i_{s-1}}) (\partial^{n_s} a_{i_s}) ::: \mid n_1 \ge n_2 \ge \cdots \ge n_s \ge 0 \right\}$$

Define |0
angle := the element corresponding to s= 0, and

$$[a_{\lambda}b] = [a,b] + k(a|b)\lambda = a_{(0)}b + a_{(1)}b\lambda .$$

If $\mathfrak{g} = \mathfrak{sl}_2 = \operatorname{Span}_{\mathbb{C}} \{e, h, f\}$, some lambda brackets in $V^k(\mathfrak{sl}_2)$ are

$$[e_{\lambda}f] = h + k\lambda, \quad [h_{\lambda}e] = 2e, \quad [h_{\lambda}h] = 2k\lambda$$

Definition

Let $(V, |0\rangle, \cdot_{(n)} \cdot)$ be a vertex algebra. A diagonalizable operator $H : V \to V$ is called a **Hamiltonian operator** if

$$\Delta(a_{(n)}b) = \Delta(a) + \Delta(b) - n - 1$$

for any eigenvectors a, b of H. Here, $\Delta(a)$ denotes the eigenvalue of a with respect to H.

Definition

Let $(V, |0\rangle, \cdot_{(n)} \cdot)$ be a vertex algebra. A diagonalizable operator $H : V \to V$ is called a **Hamiltonian operator** if

$$\Delta(a_{(n)}b) = \Delta(a) + \Delta(b) - n - 1$$

for any eigenvectors a, b of H. Here, $\Delta(a)$ denotes the eigenvalue of a with respect to H.

Example

In $V^k(\mathfrak{sl}_2)$, define

$$H(e) = 0, \quad H(h) = h, \quad H(f) = 2f$$
.

Then

$$\Delta(e_{(0)}f) = \Delta(h) = 1 = 0 + 2 - 0 - 1 = \Delta(e) + \Delta(f) - 0 - 1 ,$$

$$\Delta(h_{(1)}h) = \Delta(2k) = 0 = 1 + 1 - 1 - 1 = \Delta(h) + \Delta(h) - 1 - 1 .$$

Let $(V, |0\rangle, \cdot_{(n)})$ be a vertex algebra and H be a Hamiltonian operator. The *H*-tiwsted **Zhu algebra** of V is defined as follows:

 $Zhu_H(V) := V/(\partial + H)V$.

Let $(V, |0\rangle, \cdot_{(n)})$ be a vertex algebra and H be a Hamiltonian operator. The *H*-tiwsted **Zhu algebra** of V is defined as follows:

$$\mathit{Zhu}_{H}(V):=V/(\partial+H)V$$
 .

Example

Let
$$\mathfrak{g} = \mathfrak{sl}_2$$
 and $H: V^k(\mathfrak{g}) \to V^k(\mathfrak{g}), H(e) = 0, H(h) = h, H(f) = 2f$ be as before. Then

$$\overline{\partial e} = \overline{-H(e)} = 0, \quad \overline{\partial h} = \overline{-H(h)} = -\overline{h}, \quad \overline{\partial f} = \overline{-H(f)} = -2\overline{f}$$

in $Zhu_H(V^k(\mathfrak{g}))$.

Theorem (Zhu, 1996)

Define a multiplication on $Zhu_H(V) = V/(\partial + H)V$ as follows :

$$\overline{a} \cdot \overline{b} := \overline{: ab:} + \sum_{j \in \mathbb{Z}_{\geq 0}} \frac{1}{j+1} \binom{\Delta(a) - 1}{j} \overline{H(a)_{(j)}b} .$$

Then $(Zhu_H(V), \cdot)$ is an associative algebra. Moreover,

$$\overline{a} \cdot \overline{b} - \overline{b} \cdot \overline{a} = \sum_{j \in \mathbb{Z}_{\geq 0}} igg(rac{\Delta(a) - 1}{j} igg) \overline{a_{(j)} b} \; .$$

Example

Let $V = V^k(\mathfrak{sl}_2)$ and $H: V \to V$ be as before. In $Zhu_H(V)$, from

$$[e_{\lambda}f] = h + k\lambda, \quad [h_{\lambda}e] = 2e, \quad [h_{\lambda}h] = 2k\lambda$$

and

$$\overline{a} \cdot \overline{b} - \overline{b} \cdot \overline{a} = \sum_{j \in \mathbb{Z}_{\geq 0}} {\Delta(a) - 1 \choose j} \overline{a_{(j)}b} \; ,$$

we can compute as follows :

$$[\overline{e},\overline{f}] = \overline{h} - k, \quad [\overline{h},\overline{e}] = 2\overline{e}, \quad [\overline{h},\overline{h}] = 0.$$

Example

Let $V = V^k(\mathfrak{sl}_2)$ and $H: V \to V$ be as before. In $Zhu_H(V)$, from

$$[e_{\lambda}f] = h + k\lambda, \quad [h_{\lambda}e] = 2e, \quad [h_{\lambda}h] = 2k\lambda$$

and

$$\overline{a} \cdot \overline{b} - \overline{b} \cdot \overline{a} = \sum_{j \in \mathbb{Z}_{\geq 0}} {\Delta(a) - 1 \choose j} \overline{a_{(j)}b} \; ,$$

we can compute as follows :

$$[\overline{e},\overline{f}] = \overline{h} - k, \quad [\overline{h},\overline{e}] = 2\overline{e}, \quad [\overline{h},\overline{h}] = 0.$$

Define an algebra homomorphism

$$U(\mathfrak{sl}_2) o Zhu_H(V^k(\mathfrak{sl}_2))$$

 $e \mapsto \overline{e}, \quad h \mapsto \overline{h} - k, \quad f \mapsto \overline{f}$

then it is an algebra isomorphism.

Definition

1. A vector L in a vertex algebra V is called **conformal** if $L_{(0)} = \partial$, $L_{(1)}$ is diagonalizable, and

$$[L_{\lambda}L] = (\partial + 2\lambda)L + \frac{c}{12}\lambda^3$$
.

2. (V, L) is called a **vertex operator algebra (VOA)** if V is a vertex algebra, $L \in V$ is a conformal vector, and they satisfy some additional conditions.

Definition

1. A vector L in a vertex algebra V is called **conformal** if $L_{(0)} = \partial$, $L_{(1)}$ is diagonalizable, and

$$[L_{\lambda}L] = (\partial + 2\lambda)L + \frac{c}{12}\lambda^3$$
.

2. (V, L) is called a **vertex operator algebra (VOA)** if V is a vertex algebra, $L \in V$ is a conformal vector, and they satisfy some additional conditions.

Remark

- **1**. \mathfrak{g} : simple Lie algebra \Rightarrow the Killing form is non-degenerate $\Rightarrow \exists$ dual basis $\{a^i\}_{i \in I}$ of a given basis $\{a_i\}_{i \in I}$ of \mathfrak{g} .
- 2. If $k \neq -h^{\vee}$, there is a conformal vector $L = \sum_{i \in I} : a_i a^i :\in V^k(\mathfrak{g})$. This is known as the Sugawara construction.
- 3. If L is a conformal vector, $L_{(1)}$ is a Hamiltonian operator.

Finite *W*-algebras

Let N be a positive integer and from now on fix $\mathfrak{g} = \mathfrak{sl}_N(\mathbb{C})$. Consider the left-justified pyramid corresponding to the partition $\mu = (\mu_1, \dots, \mu_m)$ of N. For example, for the partitions $\mu = (2, 3, 4) \vdash 9 = N$ is given by

1	2		
3	4	5	
6	7	8	9

Let N be a positive integer and from now on fix $\mathfrak{g} = \mathfrak{sl}_N(\mathbb{C})$. Consider the left-justified pyramid corresponding to the partition $\mu = (\mu_1, \dots, \mu_m)$ of N. For example, for the partitions $\mu = (2, 3, 4) \vdash 9 = N$ is given by

1	2		
3	4	5	
6	7	8	9

Define an element $e \in \mathfrak{g}$ corresponding to μ by

$$e := \sum_{\substack{i=1,\cdots,N-1\ {
m row}_{\mu}(i)={
m row}_{\mu}(i+1)}} e_{i,i+1}$$

For example, if $\mu = (2, 3, 4)$, then $e = e_{12} + e_{34} + e_{45} + e_{67} + e_{78} + e_{89}$.

Finite *W*-algebras

Define a \mathbb{Z} -gradation on $\mathfrak{g} = \bigoplus_{i \in \mathbb{Z}} \mathfrak{g}(i)$ as follows :

```
\deg(e_{ij}) = \operatorname{col}_{\mu}(j) - \operatorname{col}_{\mu}(i).
```

For example, for $\mu = (2,3,4) \vdash 9 = N$, $e_{13}, e_{31}, e_{16} \in \mathfrak{g}(0)$, $e_{56} \in \mathfrak{g}(-2)$, $e_{65} \in \mathfrak{g}(2)$.

1	2		
3	4	5	
6	7	8	9

Finite *W*-algebras

Define a \mathbb{Z} -gradation on $\mathfrak{g} = \bigoplus_{i \in \mathbb{Z}} \mathfrak{g}(i)$ as follows :

(

$$\deg(e_{ij}) = \operatorname{col}_\mu(j) - \operatorname{col}_\mu(i) \;.$$

For example, for $\mu = (2,3,4) \vdash 9 = N$, $e_{13}, e_{31}, e_{16} \in \mathfrak{g}(0)$, $e_{56} \in \mathfrak{g}(-2)$, $e_{65} \in \mathfrak{g}(2)$.

1	2		
3	4	5	
6	7	8	9

Set $\mathfrak{n}_{\mu} := \bigoplus_{i>0} \mathfrak{g}(i)$ and

 $\mathcal{I}_{\mu} := \mathit{U}(\mathfrak{g}) \left\langle \mathit{n} + \chi(\mathit{n}) \mid \mathit{n} \in \mathfrak{n}_{\mu}
ight
angle$

where $\chi \in \mathfrak{n}_{\mu}^{*}$ corresponding to $e \in \mathfrak{g}(1)$.

Definition

The finite W-algebra is the associative algebra

$$U(\mathfrak{g},\mu):=(U(\mathfrak{g})/\mathcal{I}_{\mu})^{\mathsf{ad}|\mathfrak{n}_{\mu}}=(U(\mathfrak{g})/U(\mathfrak{g})\langle n+\chi(n)\mid n\in\mathfrak{n}_{\mu}
angle)^{\mathsf{adn}_{\mu}}$$

.

Definition

The finite W-algebra is the associative algebra

$$U(\mathfrak{g},\mu):=(U(\mathfrak{g})/\mathcal{I}_{\mu})^{\mathsf{ad}\,\,\mathfrak{n}_{\mu}}=(U(\mathfrak{g})/U(\mathfrak{g})\,\langle n+\chi(n)\mid\,n\in\mathfrak{n}_{\mu}
angle)^{\mathsf{adn}_{\mu}}$$

Example

Let
$$\mu = (1, 1, \cdots, 1)$$
. Then $e = 0$ and $\mathfrak{n}_{\mu} = 0$, so $U(\mathfrak{sl}_N, \mu) = U(\mathfrak{sl}_N)$.

Example

Let
$$N = 3$$
 and $\mu = (1, 2)$. Then $e = e_{23}$ and $\mathfrak{n}_{\mu} = \text{Span}_{\mathbb{C}} \{e_{13}, e_{23}\}$.
In this case the finite *W*-algebra is

 $U(\mathfrak{sl}_3,(1,2)) = \left(U(\mathfrak{sl}_3)/U(\mathfrak{sl}_3)\left\langle e_{13},e_{23}+1
ight
angle
ight)^{\mathsf{adn}_\mu}$.

.

Suppose $\mu \vdash N$ is given and \mathfrak{n}_{μ} as before. Define a vertex *super*algebra $\mathcal{F}(\mathfrak{n}_{\mu})$, called the **free fermion vertex algebra**, as follows : as the odd vector superspaces,

$$\mathcal{F}(\mathfrak{n}_{\mu})=\phi_{\mathfrak{n}_{\mu}}\oplus\phi^{\mathfrak{n}_{\mu}^{*}}$$

where $\phi_{\mathfrak{n}_{\mu}} = \{\phi_n \mid n \in \mathfrak{n}_{\mu}\}, \ \phi^{\mathfrak{n}^*_{\mu}} = \{\phi^m \mid m \in \mathfrak{n}^*_{\mu}\}.$

Suppose $\mu \vdash N$ is given and \mathfrak{n}_{μ} as before. Define a vertex *super*algebra $\mathcal{F}(\mathfrak{n}_{\mu})$, called the **free fermion vertex algebra**, as follows : as the odd vector superspaces,

$$\mathcal{F}(\mathfrak{n}_{\mu})=\phi_{\mathfrak{n}_{\mu}}\oplus\phi^{\mathfrak{n}_{\mu}^{*}}$$

where $\phi_{\mathfrak{n}_{\mu}} = \{\phi_n \mid n \in \mathfrak{n}_{\mu}\}, \phi^{\mathfrak{n}_{\mu}^*} = \{\phi^m \mid m \in \mathfrak{n}_{\mu}^*\}$. The vertex superalgebra $\mathcal{F}(\mathfrak{n}_{\mu})$ is freely generated by the elements ϕ_n and ϕ^m as a differential algebra with the following λ -brackets :

$$[\phi_n \lambda \phi^m] = m(n), \qquad [\phi_n \lambda \phi_{n'}] = [\phi^m_\lambda \phi^{m'}] = 0.$$

Affine Walgebras

Define the vertex algebra

$$C^k(\mathfrak{g},\mu):=V^k(\mathfrak{g})\otimes \mathcal{F}(\mathfrak{n}_\mu)=igoplus_{i\in\mathbb{Z}}C^k(\mathfrak{g},\mu)(i)$$

and its element

$$d:=\sum_{i\in S_{\mu}}:\phi^{e_{i}^{*}}e_{i}:+\phi^{\chi}+rac{1}{2}\sum_{i,i'\in S_{\mu}}:\phi^{e_{i}^{*}}:\phi^{e_{i'}^{*}}\phi_{[e_{i},e_{i'}]}::\in C^{k}(\mathfrak{g},\mu)(1)\;.$$

Here, $\{e_i\}_{i \in S_{\mu}}$ is a basis of \mathfrak{n}_{μ} .

Affine Walgebras

Define the vertex algebra

$${\mathcal C}^k({\mathfrak g},\mu):={\mathcal V}^k({\mathfrak g})\otimes {\mathcal F}({\mathfrak n}_\mu)= igoplus_{i\in {\mathbb Z}} {\mathcal C}^k({\mathfrak g},\mu)(i)$$

and its element

$$d:=\sum_{i\in S_{\mu}}:\phi^{e_{i}^{*}}e_{i}:+\phi^{\chi}+rac{1}{2}\sum_{i,i'\in S_{\mu}}:\phi^{e_{i}^{*}}:\phi^{e_{i'}^{*}}\phi_{[e_{i},e_{i'}]}::\in C^{k}(\mathfrak{g},\mu)(1)$$
 .

Here, $\{e_i\}_{i \in S_{\mu}}$ is a basis of \mathfrak{n}_{μ} .

Theorem

1.
$$(d_{(0)})^2 : C^k(\mathfrak{g},\mu)(i) \to C^k(\mathfrak{g},\mu)(i+2)$$
 is zero.
2. If $i \neq 0$, $H^i(C^k(\mathfrak{g},\mu), d_{(0)}) = 0$.

Definition

The complex $(C^k(\mathfrak{g},\mu), d_{(0)})$ is called the **BRST complex**.

$$W^k(\mathfrak{g},\mu):=H^0(C^k(\mathfrak{g},\mu),d_{(0)})=rac{\ker\,d_{(0)}}{\mathrm{Im}\,\,d_{(0)}}$$

is called the affine *W*-algebra.

Definition

The complex $(C^{k}(\mathfrak{g},\mu), d_{(0)})$ is called the **BRST complex**.

$$W^k(\mathfrak{g},\mu):=H^0(\mathit{C}^k(\mathfrak{g},\mu),d_{(0)})=rac{\ker\,d_{(0)}}{\mathrm{Im}\,d_{(0)}}$$

is called the affine W-algebra.

Theorem

- 1. The conformal vector of $V^k(\mathfrak{g})$ by the Sugawara construction (with some shift) induces a conformal vector of $W^k(\mathfrak{g},\mu)$.
- (De Sole, Kac) Using the Hamiltonian operator above, Zhu_H(W^k(𝔅, μ)) ≅ U(𝔅, μ). In particular, Zhu_H(V^k(𝔅)) ≅ U(𝔅).

Let \mathfrak{g} be a simple Lie algebra.

- 1. (Gan, Ginzburg, 2002) $U(\mathfrak{g},\mu)$ is a quantization of Slodowy slice.
- 2. (De Sole, Kac, 2006) $Zhu_H(W^k(\mathfrak{g},\mu)) \cong U(\mathfrak{g},\mu).$
- 3. (De Sole, Kac, 2006) The cardinality of the set of generators of $W^k(\mathfrak{g},\mu)$ and $U(\mathfrak{g},\mu)$ is the dimension of $\mathfrak{g}(0)$.
- 4. (Premet, 2007) The center of $U(\mathfrak{g},\mu)$ is isomorphic to the center of $U(\mathfrak{g})$.
- 5. (Arakawa, 2011) The center of $W^k(\mathfrak{g},\mu)$ is isomorphic to the center of $V^k(\mathfrak{g})$ and it is trivial unless $k = -h^{\vee}$.

From now on, we fix $\mathfrak{g}=\mathfrak{gl}_N$ and a nilpotent element $e\in\mathfrak{g}.$ Define

$$\mathfrak{a} := \mathfrak{g}^e = \mathsf{ker} (\mathsf{ad} \ e) \subseteq \mathfrak{g}$$
.

From now on, we fix $\mathfrak{g} = \mathfrak{gl}_N$ and a nilpotent element $e \in \mathfrak{g}$. Define

$$\mathfrak{a} := \mathfrak{g}^e = \mathsf{ker} (\mathsf{ad} \ e) \subseteq \mathfrak{g}$$
 .

Remarks

- 1. If e = 0, then $\mathfrak{a} = \mathfrak{gl}_N$.
- 2. \mathfrak{a} is not reductive in general. Therefore the Killing form on \mathfrak{a} is degenerate.
- 3. There is a symmetric invariant bilinear form on a, which recovers the Killing form when e = 0.

Generalized W-algebras

There is a basis of ${\mathfrak a}$ of the form

$$\left\{ E_{ij}^{(r)} := \sum_{\substack{\mathsf{row}_{\lambda}(a) = i, \mathsf{row}_{\lambda}(b) = j \\ \mathsf{col}_{\lambda}(b) - \mathsf{col}_{\lambda}(a) = r}} e_{ab} \; \middle| \; 1 \le i, j \le n \text{ and some conditions} \right\}$$

for some non-negative integer n and their relation is given by

$$[E_{ij}^{(r)}, E_{kl}^{(s)}] = \delta_{kj} E_{il}^{(r+s)} - \delta_{il} E_{kj}^{(r+s)} .$$

Generalized W-algebras

There is a basis of ${\mathfrak a}$ of the form

$$\left\{ E_{ij}^{(r)} := \sum_{\substack{\mathsf{row}_{\lambda}(a) = i, \mathsf{row}_{\lambda}(b) = j \\ \mathsf{col}_{\lambda}(b) - \mathsf{col}_{\lambda}(a) = r}} e_{ab} \; \middle| \; 1 \le i, j \le n \text{ and some conditions} \right.$$

for some non-negative integer n and their relation is given by

$$[E_{ij}^{(r)}, E_{kl}^{(s)}] = \delta_{kj} E_{il}^{(r+s)} - \delta_{il} E_{kj}^{(r+s)}$$

Let $\mu \vdash n$.

In the same way as before, from μ we can define a nilpotent element ${\bf e}\in \mathfrak{a}$ and a $\mathbb{Z}\text{-}{\rm gradation}$

$$\mathfrak{a} = \bigoplus_{i \in \mathbb{Z}} \mathfrak{a}(i)$$
.

Theorem (Choi, Molev, Suh)

- The definition of finite and affine W-algebras for α associated with μ is well-defined. These are called the generalized finite and affine W-algebras and let's denote those U(α, μ) and W^k(α, μ), respectively.
- The cardinality of the set of generators of W^k(a, μ) and U(a, μ) is the dimension of a(0).
- 3. When e = 0, then they are original W-algebras.
- 4. When $\mu = (1, 1, \dots, 1)$, then $U(\mathfrak{a}, \mu) = U(\mathfrak{a})$.
- 5. When $\mu = (n)$, then the center of $U(\mathfrak{a})$ is isomorphic to $U(\mathfrak{a}, \mu)$.
- When μ = (1, · · · , 1, 2), we can find the explicit formula of the generators of U(a, μ) and W^k(a, μ).

Recall 1) If there is a conformal vector L in a vertex algebra, $L_{(1)}$ is a Hamiltonian operator.

Recall 2) From the Sugawara construction, $V^k(\mathfrak{g})$ has a conformal vector.

Recall 3) There is the conformal vector in $W^k(\mathfrak{g},\mu)$ induced from the conformal vector in $V^k(\mathfrak{g})$.

Recall 1) If there is a conformal vector L in a vertex algebra, $L_{(1)}$ is a Hamiltonian operator.

Recall 2) From the Sugawara construction, $V^k(\mathfrak{g})$ has a conformal vector.

Recall 3) There is the conformal vector in $W^k(\mathfrak{g},\mu)$ induced from the conformal vector in $V^k(\mathfrak{g})$.

	$W^k(\mathfrak{g},\mu)$	$W^k(\mathfrak{a},\mu)$
Conformal vector	0	Х
Hamiltonian operator	0	0

Why?

Recall 1) If there is a conformal vector L in a vertex algebra, $L_{(1)}$ is a Hamiltonian operator.

Recall 2) From the Sugawara construction, $V^k(\mathfrak{g})$ has a conformal vector.

Recall 3) There is the conformal vector in $W^k(\mathfrak{g},\mu)$ induced from the conformal vector in $V^k(\mathfrak{g})$.

	$W^k(\mathfrak{g},\mu)$	$W^k(\mathfrak{a},\mu)$
Conformal vector	0	Х
Hamiltonian operator	0	0

Why? It is because ${\mathfrak a}$ does not admit a "non-degenerate" symmetric invariant bilinear form.

- 1. (Gan, Ginzburg, 2002) $U(\mathfrak{g}, \mu)$ is a quantization of Slodowy slice. \Rightarrow What is the classical limit of $U(\mathfrak{a}, \mu)$?
- 2. (De Sole, Kac, 2006) $Zhu_H(W^k(\mathfrak{g},\mu)) \cong U(\mathfrak{g},\mu)$. \Rightarrow Also holds for \mathfrak{a} .
- 3. (De Sole, Kac, 2006) The cardinality of the set of generators of $W^k(\mathfrak{g},\mu)$ and $U(\mathfrak{g},\mu)$ is the dimension of $\mathfrak{g}(0)$. \Rightarrow Also holds for \mathfrak{a} .
- 4. (Premet, 2007) The center of $U(\mathfrak{g},\mu)$ is isomorphic to the center of $U(\mathfrak{g})$. \Rightarrow Also holds for \mathfrak{a} and $\mu = (n)$
- 5. (Arakawa, 2011) The center of $W^k(\mathfrak{g}, \mu)$ is isomorphic to the center of $V^k(\mathfrak{g})$ and it is trivial unless $k = -h^{\vee}$. \Rightarrow is it also true for \mathfrak{a} ?