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Main Theorem

1. ZhuH(Vertex Algebra) : Associative algebra.

2. (Choi, Molev, Suh) Constructed new class of vertex algebras,
called the generalized affine W-algebras, and their Zhu
algebras.

2 / 23



Main Theorem

1. ZhuH(Vertex Algebra) : Associative algebra.

2. (Choi, Molev, Suh) Constructed new class of vertex algebras,
called the generalized affine W-algebras, and their Zhu
algebras.

2 / 23



Overview

1. Zhu algebras
1.1 Vertex algebras
1.2 Example
1.3 Hamiltonian operator
1.4 Zhu algebra
1.5 VOA

2. W algebras
2.1 Finite W algebras
2.2 Affine W algebras
2.3 Historical remarks

3. Generalized W algebras
3.1 Definitions
3.2 Difficulties in this algebras
3.3 Further topics

3 / 23



Vertex algebras

Definition

A vertex algebra consists of

1. a vector space V ,

2. the vacuum vector |0⟩ ∈ V ,

3. and n-th product ·(n)·, n ∈ Z,
and they satisfy Vacuum axiom, Borcherds identity, and locality axiom.

Remark

a(n)b =


a(n)b, n ≥ 0

a(−1)b

a(−n)b, n > 0

Lambda bracket [aλb] ∈ V [λ]

Normally ordered product : ab :

Derivation ∂ and : ab :
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Vertex algebras

More precisely,

1. The informations of ·(n)·, n ≥ 0, are recorded in the lambda bracket

[aλb] :=
∑
n≥0

λn

n!
a(n)b a, b ∈ V , [aλb] ∈ V [λ] .

2. : ab : := a(−1)b .

3. a(−n−1)b = 1
n! : (∂

na)b : for n ≥ 0.

To summarize, the data of a vertex algebra can be written in the following ways :
(V , |0⟩ , ·(n)·), n ∈ Z, or (V , |0⟩ , [·λ·], : :, ∂).
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Example : Universal affine vertex algebra

Example

g : simple Lie algerba, (· | ·) : the Killing form, {ai}i∈I : a basis of g.
For k ∈ C, define

V k(g) = SpanC
{
: (∂n1ai1) : · · · :

(
∂ns−1ais−1

)
(∂nsais ) :::

∣∣ n1 ≥ n2 ≥ · · · ≥ ns ≥ 0
}

.

Define |0⟩ := the element corresponding to s = 0, and

[aλb] = [a, b] + k (a|b)λ = a(0)b + a(1)bλ .

If g = sl2 = SpanC{e, h, f }, some lambda brackets in V k(sl2) are

[eλf ] = h + kλ, [hλe] = 2e, [hλh] = 2kλ .
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Hamiltonian operator

Definition

Let (V , |0⟩ , ·(n)·) be a vertex algebra. A diagonalizable operator H : V → V is called a
Hamiltonian operator if

∆(a(n)b) = ∆(a) + ∆(b)− n − 1

for any eigenvectors a, b of H. Here, ∆(a) denotes the eigenvalue of a with respect to H.

Example

In V k(sl2), define
H(e) = 0, H(h) = h, H(f ) = 2f .

Then
∆(e(0)f ) = ∆(h) = 1 = 0 + 2− 0− 1 = ∆(e) + ∆(f )− 0− 1 ,

∆(h(1)h) = ∆(2k) = 0 = 1 + 1− 1− 1 = ∆(h) + ∆(h)− 1− 1 .
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Zhu algebra

Let (V , |0⟩ , ·(n)) be a vertex algebra and H be a Hamiltonian operator. The H-tiwsted
Zhu algebra of V is defined as follows:

ZhuH(V ) := V /(∂ + H)V .

Example

Let g = sl2 and H : V k(g) → V k(g),H(e) = 0,H(h) = h,H(f ) = 2f be as before. Then

∂e = −H(e) = 0, ∂h = −H(h) = −h, ∂f = −H(f ) = −2f

in ZhuH(V
k(g)).
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Zhu algebra

Theorem (Zhu, 1996)

Define a multiplication on ZhuH(V ) = V /(∂ + H)V as follows :

a · b := : ab : +
∑
j∈Z≥0

1

j + 1

(
∆(a)− 1

j

)
H(a)(j)b .

Then (ZhuH(V ), ·) is an associative algebra. Moreover,

a · b − b · a =
∑
j∈Z≥0

(
∆(a)− 1

j

)
a(j)b .
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Example

Let V = V k(sl2) and H : V → V be as before. In ZhuH(V ), from

[eλf ] = h + kλ, [hλe] = 2e, [hλh] = 2kλ

and

a · b − b · a =
∑
j∈Z≥0

(
∆(a)− 1

j

)
a(j)b ,

we can compute as follows :

[e, f ] = h − k , [h, e] = 2e, [h, h] = 0 .

Define an algebra homomorphism

U(sl2) → ZhuH(V
k(sl2))

e 7→ e, h 7→ h − k, f 7→ f

then it is an algebra isomorphism.
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VOA

Definition

1. A vector L in a vertex algebra V is called conformal if L(0) = ∂, L(1) is
diagonalizable, and

[LλL] = (∂ + 2λ)L+
c

12
λ3 .

2. (V , L) is called a vertex operator algebra (VOA) if V is a vertex algebra, L ∈ V is
a conformal vector, and they satisfy some additional conditions.

Remark

1. g : simple Lie algebra ⇒ the Killing form is non-degenerate ⇒ ∃ dual basis {ai}i∈I
of a given basis {ai}i∈I of g.

2. If k ̸= −h∨, there is a conformal vector L =
∑

i∈I : aia
i :∈ V k(g). This is known as

the Sugawara construction.

3. If L is a conformal vector, L(1) is a Hamiltonian operator.

11 / 23



VOA

Definition

1. A vector L in a vertex algebra V is called conformal if L(0) = ∂, L(1) is
diagonalizable, and

[LλL] = (∂ + 2λ)L+
c

12
λ3 .

2. (V , L) is called a vertex operator algebra (VOA) if V is a vertex algebra, L ∈ V is
a conformal vector, and they satisfy some additional conditions.

Remark

1. g : simple Lie algebra ⇒ the Killing form is non-degenerate ⇒ ∃ dual basis {ai}i∈I
of a given basis {ai}i∈I of g.

2. If k ̸= −h∨, there is a conformal vector L =
∑

i∈I : aia
i :∈ V k(g). This is known as

the Sugawara construction.

3. If L is a conformal vector, L(1) is a Hamiltonian operator.

11 / 23



Finite W -algebras

Let N be a positive integer and from now on fix g = slN(C).
Consider the left-justified pyramid corresponding to the partition µ = (µ1, · · · , µm) of N.
For example, for the partitions µ = (2, 3, 4) ⊢ 9 = N is given by

1 2

3 4 5

6 7 8 9

Define an element e ∈ g corresponding to µ by

e :=
∑

i=1,··· ,N−1
rowµ(i)=rowµ(i+1)

ei ,i+1

For example, if µ = (2, 3, 4), then e = e12 + e34 + e45 + e67 + e78 + e89.
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Finite W -algebras

Define a Z-gradation on g =
⊕

i∈Z g(i) as follows :

deg(eij) = colµ(j)− colµ(i) .

For example, for µ = (2, 3, 4) ⊢ 9 = N, e13, e31, e16 ∈ g(0), e56 ∈ g(−2), e65 ∈ g(2).

1 2

3 4 5

6 7 8 9

Set nµ :=
⊕

i>0 g(i) and

Iµ := U(g) ⟨n + χ(n) | n ∈ nµ⟩

where χ ∈ n∗µ corresponding to e ∈ g(1).
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Finite W -algebras

Definition

The finite W-algebra is the associative algebra

U(g, µ) := (U(g)/Iµ)ad nµ = (U(g)/U(g) ⟨n + χ(n) | n ∈ nµ⟩)adnµ .

Example

Let µ = (1, 1, · · · , 1). Then e = 0 and nµ = 0, so U(slN , µ) = U(slN).

Example

Let N = 3 and µ = (1, 2). Then e = e23 and nµ = SpanC{e13, e23}.
In this case the finite W -algebra is

U(sl3, (1, 2)) = (U(sl3)/U(sl3) ⟨e13, e23 + 1⟩)adnµ .
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Affine W algebras

Suppose µ ⊢ N is given and nµ as before. Define a vertex superalgebra F(nµ), called the
free fermion vertex algebra, as follows : as the odd vector superspaces,

F(nµ) = ϕnµ ⊕ ϕn∗µ

where ϕnµ = {ϕn | n ∈ nµ}, ϕn∗µ = {ϕm | m ∈ n∗µ}.

The vertex superalgebra F(nµ) is
freely generated by the elements ϕn and ϕm as a differential algebra with the following
λ-brackets :

[ϕn λϕ
m] = m(n), [ϕn λϕn′ ] = [ϕm

λϕ
m′
] = 0 .
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Affine W algebras

Define the vertex algebra

C k(g, µ) := V k(g)⊗F(nµ) =
⊕
i∈Z

C k(g, µ)(i)

and its element

d :=
∑
i∈Sµ

: ϕe∗i ei : +ϕχ +
1

2

∑
i ,i ′∈Sµ

: ϕe∗i : ϕe∗
i′ϕ[ei ,ei′ ]

:: ∈ C k(g, µ)(1) .

Here, {ei}i∈Sµ is a basis of nµ.

Theorem

1. (d(0))
2 : C k(g, µ)(i) → C k(g, µ)(i + 2) is zero.

2. If i ̸= 0, H i (C k(g, µ), d(0)) = 0.
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Affine W -algebras

Definition

The complex (C k(g, µ), d(0)) is called the BRST complex.

W k(g, µ) := H0(C k(g, µ), d(0)) =
ker d(0)
Im d(0)

is called the affine W -algebra.

Theorem

1. The conformal vector of V k(g) by the Sugawara construction (with some shift)
induces a conformal vector of W k(g, µ).

2. (De Sole, Kac) Using the Hamiltonian operator above, ZhuH(W
k(g, µ)) ∼= U(g, µ).

In particular, ZhuH(V
k(g)) ∼= U(g).
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Historical remarks

Let g be a simple Lie algebra.

1. (Gan, Ginzburg, 2002) U(g, µ) is a quantization of Slodowy slice.

2. (De Sole, Kac, 2006) ZhuH(W
k(g, µ)) ∼= U(g, µ).

3. (De Sole, Kac, 2006) The cardinality of the set of generators of W k(g, µ) and
U(g, µ) is the dimension of g(0).

4. (Premet, 2007) The center of U(g, µ) is isomorphic to the center of U(g).

5. (Arakawa, 2011) The center of W k(g, µ) is isomorphic to the center of V k(g) and it
is trivial unless k = −h∨.
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Generalized W -algebras

From now on, we fix g = glN and a nilpotent element e ∈ g. Define

a := ge = ker (ad e) ⊆ g .

Remarks

1. If e = 0, then a = glN .

2. a is not reductive in general. Therefore the Killing form on a is degenerate.

3. There is a symmetric invariant bilinear form on a, which recovers the Killing form
when e = 0.
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Generalized W -algebras

There is a basis of a of the formE
(r)
ij :=

∑
rowλ(a)=i ,rowλ(b)=j
colλ(b)−colλ(a)=r

eab

∣∣∣∣∣∣∣∣ 1 ≤ i , j ≤ n and some conditions


for some non-negative integer n and their relation is given by

[E
(r)
ij ,E

(s)
kl ] = δkjE

(r+s)
il − δilE

(r+s)
kj .

Let µ ⊢ n .
In the same way as before, from µ we can define a nilpotent element e ∈ a and a
Z-gradation

a =
⊕
i∈Z

a(i) .
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Generalized W -algebras

Theorem (Choi, Molev, Suh)

1. The definition of finite and affine W -algebras for a associated with µ is well-defined.
These are called the generalized finite and affine W-algebras and let’s denote
those U(a, µ) and W k(a, µ), respectively.

2. The cardinality of the set of generators of W k(a, µ) and U(a, µ) is the dimension of
a(0).

3. When e = 0, then they are original W -algebras.

4. When µ = (1, 1, · · · , 1), then U(a, µ) = U(a).

5. When µ = (n), then the center of U(a) is isomorphic to U(a, µ).

6. When µ = (1, · · · , 1, 2), we can find the explicit formula of the generators of U(a, µ)
and W k(a, µ).
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Difficulties in this algebras

Recall 1) If there is a conformal vector L in a vertex algebra, L(1) is a Hamiltonian
operator.
Recall 2) From the Sugawara construction, V k(g) has a conformal vector.
Recall 3) There is the conformal vector in W k(g, µ) induced from the conformal vector in
V k(g).

W k(g, µ) W k(a, µ)

Conformal vector O X

Hamiltonian operator O O

Why? It is because a does not admit a “non-degenerate” symmetric invariant bilinear
form.
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Further topics

1. (Gan, Ginzburg, 2002) U(g, µ) is a quantization of Slodowy slice. ⇒ What is the
classical limit of U(a, µ)?

2. (De Sole, Kac, 2006) ZhuH(W
k(g, µ)) ∼= U(g, µ). ⇒ Also holds for a.

3. (De Sole, Kac, 2006) The cardinality of the set of generators of W k(g, µ) and
U(g, µ) is the dimension of g(0).⇒ Also holds for a.

4. (Premet, 2007) The center of U(g, µ) is isomorphic to the center of U(g). ⇒ Also
holds for a and µ = (n)

5. (Arakawa, 2011) The center of W k(g, µ) is isomorphic to the center of V k(g) and it
is trivial unless k = −h∨. ⇒ Is it also true for a?
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