Computation of the Order of Rational Cuspidal Divisors in the Modular Jacobian $J_0(N)$

Seokjoon Cho

02/10/2025

Table of Contents

- Introduction
- 2 Cusps
- Sta quotients
- 4 Computation of orders

2/26

Table of Contents

- Introduction
- 2 Cusps
- Eta quotients
- Computation of orders

Classic Theory

- **1** $\mathbb{H} := \{z \in \mathbb{C} : \text{Im}(z) > 0\}$

- **①** The Riemann surface $Y_0(N)_{\mathbb{C}} := \Gamma_0(N) \setminus \mathbb{H}$ is in bijection with the set of isomorphism classes of the pairs

$$\left\{(E,C): \frac{E: \text{elliptic curve over } \mathbb{C},}{C: \text{cyclic subgroup } \subset E \text{ of order } N}\right\}/\sim.$$

Seokjoon Cho 02/10/2025 4/26

- **3** Cusps: elements of $\Gamma_0(N)\backslash \mathbb{P}^1(\mathbb{Q})$
- ullet $X_0(N)_{\mathbb C}$: Compact Riemann surface obtained by adding cusps to $Y_0(N)_{\mathbb C}$
- $X_0(N)_{\mathbb{C}}$ has a canonical model over \mathbb{Q} denoted by $X_0(N)$, which is a smooth projective curve with the function field $\mathbb{Q}(j, j_N)$.
- **3** $j: \mathbb{H} \to \mathbb{C}$, the elliptic modular function, $j_N(z) := j(Nz)$.
- **9** In this model, the cusps are defined over cyclotomic fields and $Gal(\bar{\mathbb{Q}}/\mathbb{Q})$ permutes the cusps.

| □ ▶ ◀ ∰ ▶ ◀ 볼 ▶ ◀ 볼 → ♡ Q (~)

5/26

 $J_0(N)$: the Jacobian variety of $X_0(N)$, which is an abelian variety over \mathbb{Q} . By the Mordell-Weil theorem, $J_0(N)(\mathbb{Q})$ is a finitely generated abelian group.

$$J_0(N)(\mathbb{Q}) \cong \mathbb{Z}^r \times J_0(N)(\mathbb{Q})_{\mathsf{tors}}$$

The (Hopeless) Ultimate Goal

Compute $J_0(N)(\mathbb{Q})$ for any $N \geq 1$.

The Ultimate Goal

Compute $J_0(N)(\mathbb{Q})_{\text{tors}}$ for any $N \geq 1$.

(ロト 4년) + 4분 + 4분 + 1분 - 9Q(C)

6/26

Cuspidal divisors

- **4** A **divisor** on $X_0(N)$ is a formal finite \mathbb{Z} -linear sum of points in $X_0(N)(\bar{\mathbb{Q}})$. A **cuspidal divisor** is a divisor supported only on cusps.
- ② $\operatorname{Div}(X_0(N))$: the group of divisors on $X_0(N)$ $\operatorname{Div}^0(X_0(N))$: the subgroup of degree 0 divisors $\operatorname{Div}^0_{\operatorname{cusp}}(X_0(N))$: the subgroup of degree 0 cuspidal divisors $\operatorname{Div}^0_{\operatorname{cusp}}(X_0(N))(\mathbb{Q})$: the subgroup of degree 0 rational cuspidal divisors, i.e. those fixed by the action of $\operatorname{Gal}(\bar{\mathbb{Q}}/\mathbb{Q})$.

Seokjoon Cho 02/10/2025 7/26

- The canonical surjection

$$\pi: \mathsf{Div}^0(X_0(N)) o J_0(N)(ar{\mathbb{Q}})$$

is Galois equivariant.

- **5** $J_0(N)(\mathbb{Q}) = \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ -invariant elements of $J_0(N)(\overline{\mathbb{Q}})$.
- **1** The image of $Div_{cusp}^0(X_0(N))$ under π is called the **cuspidal subgroup** \mathcal{C}_N . The subgroup $\mathcal{C}_N(\mathbb{Q}) := \mathcal{C}_N \cap J_0(N)(\mathbb{Q})$ is called the rational cuspidal subgroup.

Seokjoon Cho 02/10/2025 8/26

Theorem (Manin-Drinfeld)

For any $N \geq 1$, $C_N \subseteq J_0(N)(\bar{\mathbb{Q}})_{tors}$. In particular, $C_N(\mathbb{Q}) \subseteq J_0(N)(\mathbb{Q})_{tors}$.

Theorem (Ogg's conjecture, Mazur (1977))

 $C_p(\mathbb{Q}) = J_0(p)(\mathbb{Q})_{tors}$ for any prime number $p \geq 5$.

More precisely, Mazur showed that $J_0(p)(\mathbb{Q})_{\text{tors}}$ is generated by a single class $\pi(0-\infty)$, which is of order $n=\operatorname{numerator}(\frac{p-1}{12})$.

Generalized Ogg's conjecture

For any $N \geq 1$, $C_N(\mathbb{Q}) = J_0(N)(\mathbb{Q})_{tors}$.

4□ > 4□ > 4 = > 4 = > = 90

9/26

The image of $\operatorname{Div}^0_{\operatorname{cusp}}(X_0(N))(\mathbb{Q})$ under $\pi:\operatorname{Div}^0(X_0(N))\to J_0(N)(\bar{\mathbb{Q}})$ is called the **rational cuspidal divisor class group** $\mathcal{C}(N)$. Clearly we have $\mathcal{C}(N)\subseteq\mathcal{C}_N(\mathbb{Q})$.

Conjecture

For any $N \geq 1$, $C(N) = C_N(\mathbb{Q})$.

Goal of this presentation:

- Find generators of C(N).
- Compute their orders.

ロト 4回ト 4 恵ト 4 恵ト 「恵」の久で

10/26

Table of Contents

- Introduction
- 2 Cusps
- Eta quotients
- Computation of orders

Seokjoon Cho 02/10/2025 11/26

Representatives of cusps

Recall that the set of cusps of $X_0(N)$ is $\Gamma_0(N)\backslash \mathbb{P}^1(\mathbb{Q})$.

Lemma

Any cusp of $X_0(N)$ is represented as a column vector $\begin{bmatrix} x \\ d \end{bmatrix} \in \mathbb{Z}^2$ with some positive divisor d|N, (x,d)=1. Also, such two columns $\begin{bmatrix} x \\ d \end{bmatrix}$ and $\begin{bmatrix} y \\ e \end{bmatrix}$ represent the same cusp if and only if

$$d = e$$
 and $x \equiv y \mod (d, N/d)$.

A cusp represented by some $\begin{bmatrix} x \\ d \end{bmatrix}$ is called a **cusp of level** d. There are exactly $\varphi(\gcd(d, N/d))$ cusps of level d. The unique cusp of level 1 (resp. N) is usually written 0 (resp. ∞).

Seokjoon Cho 02/10/2025 12/26

The Galois action on cusps

For an integer $n \geq 1$, denote μ_n the group of n-th roots of unity in $\bar{\mathbb{Q}}$, and ζ_n a primitive n-th root of unity.

Theorem

Let $\tau \in Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ be an element sending ζ_n to ζ_n^k for some $k \in (\mathbb{Z}/N\mathbb{Z})^{\times}$. Then $\tau(\begin{bmatrix} x \\ d \end{bmatrix}) = \begin{bmatrix} k'x \\ d \end{bmatrix}$, where $k' \in \mathbb{Z}$ is chosen so that $kk' \equiv 1 \mod N$ and (k', x) = 1.

Corollary

- **1** A cusp $\begin{bmatrix} x \\ d \end{bmatrix}$ is defined over $\mathbb{Q}(\mu_n)$, where n = (d, N/d).
- ② $Gal(\mathbb{Q}(\mu_n)/\mathbb{Q})$ acts on the set of cusps of level d simply transitively.

Seokioon Cho 02/10/2025 13/26

Example (squarefree N)

For any divisor d|N, there are exactly one cusp $\begin{bmatrix} 1\\d\end{bmatrix}$ of level d since (d,N/d)=1. They are all $\mathbb Q$ -rational points of $X_0(N)$.

Example $(N = p^r)$

For each $i=1,\cdots,r-1$, there are $(p-1)p^{s-1}$ cusps of level p^i where $s=\min\{i,r-i\}$. Those cusps are $\mathbb{Q}(\mu_{p^s})$ -rational.

14 / 26

The generators of C(N)

As we have seen, $Gal(\bar{\mathbb{Q}}/\mathbb{Q})$ permutes the cusps of level d, and there are $\varphi(\gcd(d,N/d))$ cusps of level d.

$$P_d := \sum_{\mathbf{X}} \begin{bmatrix} \mathbf{X} \\ d \end{bmatrix} \in \mathsf{Div}_{\mathsf{cusp}}(X_0(N))(\mathbb{Q})$$

$$C_d := \varphi(\gcd(d, N/d))P_1 - P_d \in \mathsf{Div}^0_{\mathsf{cusp}}(X_0(N))(\mathbb{Q})$$

Proposition

$$Div_{cusp}(X_0(N))(\mathbb{Q}) = \bigoplus_{d \mid N} \mathbb{Z} \cdot P_d$$

$$Div^0_{cusp}(X_0(N))(\mathbb{Q}) = \oplus_{d|N} \mathbb{Z} \cdot C_d$$

In particular, C(N) is generated by $\pi(C_d)$'s.

 Seokjoon Cho
 02/10/2025
 15/26

Table of Contents

- Introduction
- Cusps
- Sta quotients
- 4 Computation of orders

16 / 26

Let D be a rational cuspidal divisor of degree 0. Suppose $nD \sim 0$. By definition, there is a modular function $F \in \mathbb{Q}(j, j_N)$ such that

$$\operatorname{div}(F) = nD$$
.

Such F satisfies the properties (*):

- It has no zeros and poles on \mathbb{H} (i.e. it is a modular unit).
- 2 Its order at a cusp $\begin{bmatrix} x \\ d \end{bmatrix}$ only depend on the level d (i.e. it does not depend on x).

17/26

Eta quotients

Recall the Dedekind eta function:

$$\eta(z) := e^{rac{\pi i z}{12}} \prod_{n=1}^{\infty} (1 - e^{2\pi i n z}) = q^{rac{1}{24}} \prod_{n=1}^{\infty} (1 - q^n)$$

Define $\eta_{\delta}(z) := \eta(\delta z)$.

Definition

A function $g: \mathbb{H} \to \mathbb{C}$ is called an **eta quotient** of level N if it is of the form

$$g = \prod_{\delta \mid N} \eta_{\delta}^{r_{\delta}}$$

for some rational numbers $r_{\delta} \in \mathbb{Q}$.

Seokjoon Cho

Lemma

An eta quotient $g = \prod_{\delta \mid N} \eta_{\delta}^{r_{\delta}}$ has the divisor

$$div(g) = \sum_{d|N} \left(\sum_{\delta|N} \frac{a_N(d,\delta)}{24} \times r_{\delta} \right) \cdot P_d,$$

where $a_N(d, \delta)$ is defined as $a_N(d, \delta) := \frac{N}{(d, N/d)} \times \frac{(d, \delta)^2}{d\delta}$.

One can show that the matrix
$$\Lambda(N) := \left(\frac{a_N(d,\delta)}{24}\right)_{d,\delta|N}$$
 is invertible.

Seokjoon Cho 02/10/2025 19/26

Theorem (Ligozat)

An eta quotient $g=\prod_{\delta\mid N}\eta_{\delta}^{r_{\delta}}$ of level N is a rational function on $X_0(N)$ if and only if

- (0) all r_{δ} are integers;
- (1) $\sum_{\delta | N} r_{\delta} \cdot \delta \equiv 0 \mod 24$;
- (2) $\sum_{\delta|N} r_{\delta} \cdot (N/\delta) \equiv 0 \mod 24$;
- (3) $\sum_{\delta|N} r_{\delta} = 0$;
- (4) $\prod_{\delta | N} \delta^{r_{\delta}}$ is a square of a rational number.

Theorem

Any modular unit on $X_0(N)$ satisfying the properties (*) is of the form $\epsilon \cdot g$ for some eta quotient g of level N and some $\epsilon \in \mathbb{C}$.

Seokjoon Cho 02/10/2025 20/26

Table of Contents

- Introduction
- 2 Cusps
- Eta quotients
- Computation of orders

21 / 26

General strategy

Let $D = \sum_{d|N} m_d \cdot P_d$ be a cuspidal divisor of degree 0. Put $(r_{\delta}) := \Lambda(N)^{-1}(m_d).$

Theorem

D is linearly equivalent to 0 if and only if the rational numbers r_{δ} satisfy all the properties $(0) \sim (4)$. In particular, the order of D is the smallest positive integer n such that $n \cdot (r_{\delta})$ satisfy the properties $(0) \sim (4)$.

Seokjoon Cho 02/10/2025 22 / 26

N = p

The order of $C_p = 0 - \infty = \begin{bmatrix} 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 1 \\ p \end{bmatrix}$ is equal to $\operatorname{numerator}(\frac{p-1}{12})$.

- $m_1 = 1, m_p = -1, r_1 = \frac{24}{p-1}, r_p = \frac{24}{1-p}.$
- Ohecking the properties:
 - (0) $n \cdot \frac{24}{p-1} \in \mathbb{Z}$.
 - (1-3) holds for any n.
 - (4) $\prod_{\delta|N} \delta^{nr_{\delta}} = p^{-24n/(p-1)}$ is a square of a rational number if and only if $n \cdot \frac{12}{p-1} \in \mathbb{Z}$.

Seokjoon Cho 02/10/2025 23/26

$$N = pq, p \neq q$$

The order of $C_p = \begin{bmatrix} 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 1 \\ p \end{bmatrix}$ is $\operatorname{lcm}\left(\operatorname{num}(\frac{(p-1)(q+1)}{12}), \operatorname{num}(\frac{(p-1)(q^2-1)}{24})\right)$.

	p = 2	p = 3	<i>p</i> ≥ 5
q = 2	X	1	
q = 3	1	X	p – 1
<i>q</i> ≥ 5	$\frac{q^2-1}{24}$	$\frac{q^2-1}{12}$	$\frac{(p-1)(q^2-1)}{24}$

Seokjoon Cho 02/10/2025 24 / 26

$$\Lambda(N) = \frac{1}{24} \begin{pmatrix} N & q & p & 1 \\ q & N & 1 & p \\ p & 1 & N & q \\ 1 & p & q & N \end{pmatrix},$$

$$\Lambda(N)^{-1} = \frac{24}{(p^2 - 1)(q^2 - 1)} \begin{pmatrix} N & -q & -p & 1 \\ -q & N & 1 & -p \\ -p & 1 & N & -q \\ 1 & -p & -q & N \end{pmatrix}$$

- Checking the properties:
 - (0) $n \cdot \frac{24}{(n-1)(n^2-1)} \in \mathbb{Z}$.
 - (1-3) holds for any n.
 - (4) $\prod_{\delta \mid N} \delta^{nr_{\delta}} = p^{\wedge}(\frac{24n}{(n-1)(n+1)})$ is a square of a rational number if and only if $n \cdot \frac{12}{(n-1)(n+1)} \in \mathbb{Z}$.

Seokjoon Cho

25 / 26

The order of $C_N = \begin{bmatrix} 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 1 \\ N \end{bmatrix}$ is

(i)
$$\frac{q^2-1}{8\cdot(3,q+1)}$$
 if $p=2$.

(ii)
$$\frac{(p^2-1)(q^2-1)}{12\cdot(p-1,q-1)\cdot(p+1,q+1)}$$
 if p and q are odd.

- Checking the properties:
 - (0) $n \cdot \frac{24(N-1)}{(p^2-1)(q^2-1)}, n \cdot \frac{24(p-q)}{(p^2-1)(q^2-1)} \in \mathbb{Z}.$
 - (1-3) holds for any n.
 - (4) $n \cdot \frac{24(N-1+p-q)}{(p^2-1)(q^2-1)} \in 2\mathbb{Z}.$

26 / 26