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Crystals



Reminders on crystal bases

Let us start with a brief review of crystal base theory.

The crystal base is q→ 0 limit of integrable representations V(λ) of
Uq(g), where the limit is understood as taking a suitable lattice
inside of V(λ) and taking a quotient by q = 0.
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Reminders on crystal bases

Recall that we have a following nice basis of V(n) for n ∈ Z≥0.

vn

[1]q

[n]q

vn−2

[2]q

[n−1]q

vn−4

[3]q

[n−2]q

vn−6

[4]q

[n−3]q

vn−8

[5]q

[n−4]q

· · ·

We want this structure to survive in q→ 0 limit. Define:
ẽ(vi) = vi+2, f̃ (vi) = vi−2. This uniquely determines an operator for all
integrable Uq(sl2)-modules, called (lower) crystal operators.

For arbitrary g with an underlying index set I, ẽi, f̃is (i ∈ I) are defined
via the embedding Uqi(sl2) ↪→ Uq(g).
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Reminders on crystal bases

We have another nice basis of V(n).

vup
n

[n]q

[1]q

vup
n−2

[n−1]q

[2]q

vup
n−4

[n−2]q

[3]q

vup
n−6

[n−3]q

[4]q

vup
n−8

[n−4]q

[5]q

· · ·

This defines (upper) crystal operators ẽup, f̃ up.
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Reminders on crystal bases

The construction of crystal operators are quite simple, but it requires
surprisingly involved arguments to prove that there exists a lattice of
V(λ) that is stable under these operators, and that there exists a
abstract crystal at q = 0.

Let A0 = { f ∈ Q(q) | f is regular at q = 0 }. Let λ ∈ P+ be a dominant
weight.

Theorem (Kashiwara ’90 for type ABCD, ’91 for general case)

There exists a A0-lattice of V(λ), denoted L(λ), and a basis B(λ) of
L(λ)/qL(λ), such that

ẽiL(λ) ⊂ L(λ), f̃iL(λ) ⊂ L(λ),

ẽiB(λ) ⊂ B(λ) t {0}, f̃iB(λ) ⊂ B(λ) t {0},

u = ẽiv ⇐⇒ f̃iu = v (u, v ∈ B(λ))

which are compatible with weight space decompositions.
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More reminders on crystal bases

For an arbitrary integrable Uq(g)-module V whose weights are finitely
dominated, it decomposes into direct sum of V(λ)’s, so there exists a
crystal base (L,B) for such a module.

Theorem (Kashiwara ’90, cont’d)

Crystal bases of V are unique up to isomorphism. That is, for any
two crystal bases (Li,Bi) (i = 1, 2) of V, there exists an Uq(g)-linear
automorphism φ : V → V such that φ(L1) = L2, φ(B1) = B2.

Suppose that V = V1 ⊕ V2, and that V1 and V2 does not share an
isotypic component. Then the above, in particular, implies that
L(V) = L(V1)⊕ L(V2).
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Crystal bases of non-semisimple modules

There are integrable modules whose set of weights are not finitely
dominated, and in general, it is not known if a crystal base exists in
such cases. Note that nontrivial examples arise only for g of affine or
indefinite type.

Notable exceptions are extremal weight modules V(λ) and their
tensor products. V(λ)’s are indexed by weights λ ∈ P that are
possibly non-dominant, and are constructed in terms of global
crystal bases, so have a crystal base by definition.

In general,

• Crystal bases of V may not be unique.
• A proper inclusion φ : V1 → V2 may induce an isomorphism of
crystals φ : B1 → B2.
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An example of non-unique crystal bases in type A+

Consider Uq(gl>0) associated to a Dynkin diagram A+:

•
1

•
2

•
3

•
4

· · ·

Denote its weight lattice by P =
⊕

i∈Z≥0
Zεi.

The standard representation V(ε1) and its dual V(−ε1) can be
described as follows.

V(ε1) : v1

f1

e1

v2

f2

e2

v3

f3

e3

v4

f4

e4

· · ·

V(−ε1) : v1∨

f1

e1

v2∨

f2

e2

v3∨

f3

e3

v4∨

f4

e4

· · ·
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An example of non-unique crystal bases in type A+

L(ε1) and L(−ε1) are free A0-submodules generated by {vi} and
{vi∨}.

By tensor product rule, V(ε1)⊗ V(−ε1) has a crystal base

L(ε1)⊗ L(−ε1) =
⊕

i,j∈Z≥0

A0vi ⊗ vj∨ ,

B(ε1)⊗ B(−ε1) = { i⊗ j∨ | i, j ∈ Z≥0 } .

Note that weights of V(ε1)⊗ V(−ε1) are not finitely dominated, and
its weight 0 component has infinite dimension.
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An example of non-unique crystal bases in type A+

On the other hand, consider elements Dn ∈ V(ε1)⊗ V(−ε1) defined by

D1 = q−1v1 ⊗ v1∨ ,
D2 = q−2v1 ⊗ v1∨ − q−1v2 ⊗ v2∨ ,
D3 = q−3v1 ⊗ v1∨ − q−2v2 ⊗ v2∨ + q−1v3 ⊗ v3∨ ,
D4 = q−4v1 ⊗ v1∨ − q−3v2 ⊗ v2∨ + q−2v3 ⊗ v3∨ − q−1v4 ⊗ v4∨ ,

· · ·

Dn =
n∑
k=1

(−1)k−1q−n−1+kvk ⊗ vk∨ .
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An example of non-unique crystal bases in type A+

Then one can check that

ẽkDn =
{
− (−1)k−1

1+q2 vn ⊗ v(n+1)∨ if k = n,
0 k 6= n,

f̃kDn =
{
− (−1)k−1

1+q2 vn+1 ⊗ vn∨ if k = n,
0 k 6= n.

In particular, ẽkDn, f̃kDn ∈ L(ε1)⊗ L(−ε1). Thus,

LN := L(ε1)⊗ L(−ε1) +
∞∑
n=1

A0Dn

is a crystal lattice of V(ε1)⊗ V(−ε1).
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An example of non-unique crystal bases in type A+

Consider the image of B(ε1)⊗ B(−ε1) along the inclusion

L(ε1)⊗ L(−ε1) ↪→ LN.

Note that v1 ⊗ v1∨ = qD1, so 1⊗ 1∨ ∈ B(ε1)⊗B(−ε1) is mapped to 0. It
turns out that B(ε1)⊗ B(−ε1) = B(0) t B(ε1 − ε2), and the inclusion
kills the connected component B(0).

Thus, we got a crystal base (LN,B(ε1 − ε2)). Note that we got a larger
A0-lattice but a smaller Q-basis.

Also, there exists an embedding i : V(ε1 − ε2) ↪→ V(ε1)⊗ V(−ε1), such
that i−1(LN) = L(ε1 − ε2), and i induces an isomorphism of crystals.
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An example of a proper inclusion inducing an isomorphism of crystal

Such a phenomenon is not new; it was observed in the context of
affine quantum algebras. The following is conjectured in [Kas02] and
proved in [BN04].

We use the notations of [Kas02]. Let g be an affine Kac-Moody
algebra with Dynkin diagram I, and let λ =

∑
i∈I∨0

mi$i be a dominant
integral weight. Then there exists a canonical map

Φλ : V(λ) →
⊗
i∈I∨0

V(mi$i).

Theorem

1. Φλ is injective.
2. L(λ) = Φ−1

λ

(⊗
i∈I∨0

L(mi$i)
)
.

3. Φλ induces an isomorphism of crystals B(λ) →
⊗

i∈I∨0
B(mi$i).
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Maximal crystal lattices

Forget about crystal basis (L,B) for a moment, and consider a
crystal lattice L only.

If soc V exists, we have a good grip on crystal latices on it. Let’s
consider L ⊂ V that restricts to a certain given crystal lattice on soc V .

We can almost always pick a maximal one among them, with respect
to the partial order by inclusion. However, we have to allow crystal
lattices that are not free as an A0-module.
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Crystal valuations

An A0-lattice of a Q(q)-vector space V is a A0-submodule L ⊂ V that
generates V and is free as a A0-module.

Let v : Q(q) → Z∪ {∞} be the valuation counting the order of q at 0.

A function v : V → Z ∪ {∞} on a Q(q)-vector space V is called a
valuation if

• v(v) = ∞ ⇐⇒ v = 0,
• v(cv) = v(c) + v(v) for c ∈ Q(q), v ∈ V ,
• v(v + w) ≥ min{v(v),v(w)} for v,w ∈ V .

For an integrable Uq(g)-module V , a valuation v : V → Z ∪ {∞} is
called a crystal valuation if

• v(v) = min(v(vµ) |µ ∈ P) for v =
∑
vµ with vµ ∈ Vµ,

• v(ẽiv) ≥ v(v) and v(f̃iv) ≥ v(v) for all v ∈ V and i ∈ I.
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Maximal crystal valuations

Proposition

Suppose that V is of finite length, and W = soc V. If v is a crystal
valuation on V, there exists a maximal crystal valuation on V that
restricts to v|W on W.

Suppose that we have {vs}s∈S for a totally ordered set S, satisfying
vs ≥ vt whenever s ≥ t. We claim that ṽ defined by

ṽ(v) = max {vs(v) | s ∈ S }

is a crystal valuation.

Only the first condition warrants proof. For any nonzero v ∈ V , there
exists a nonzero w ∈ Uq(g)v ∩W, then

w =
∑
i

cix̃i1 · · · x̃ikv, (x = e, f ).

v(w) = vs(w) ≥ min {v(ci) | i }+ vs(v), so vs(v) is bounded above.
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Saturated crystal valuations

Definition

A crystal valuation v of V is saturated with respect to W ⊂ V if v is
maximal among any valuations extending v|W .

Lemma

v is saturated iff (Lv ∩W)/q(Lv ∩W) → Lv/qLv is a bijection. In
particular, if (L,B) is a crystal base of V, then vL is saturated iff
(L ∩W,B) is a crystal base of W.

Here, Lv = { v ∈ V |v(v) ≥ 0 }, and vL(v) = max {n |q−nv ∈ L }.

We simply call v is saturated if v is saturated with respect to soc V .
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Saturated crystal valuations of type A+

Let Vhi and Vlo be integrable Uq(gl>0)-modules of highest and lowest
weights, respectively.

Theorem (Kwon-L.)

There exists a saturated crystal valuation on

Vhi ⊗ Vlo/socd(Vhi ⊗ Vlo).

The same result holds for Vlo ⊗ Vhi.
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Fock spaces

Recall that Fock space F is a Q(q)-vector space with a basis
consisting of configuration of black and white dots indexed by Z,
which stabilizes to white at∞ and to black at −∞.

|0〉 : •
−3

•
−2

•
−1

•
0

◦
1

◦
2

◦
3

. . . . . .

It carries various actions of quantum groups, including our Uq(gl∞).
For example, fi moves a black dot at i’th position to i+ 1’th position if
possible, and ei does the opposite.

This set of vectors generate a crystal lattice, and serves as a model
for its crystal structure.
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Commuting action on Fock space Fn

Elements of Fn are depicted as below.

• ◦ • ◦ • • ◦

• • • • • ◦ ◦

• • ◦ • • ◦ ◦

...
...

It carries an action of Up(gln) that commutes with the action of
Uq(gl∞), where the quantization parameter p is set to −q−1. The
action is given in the same way but in vertical direction.

Such an action first appeared in [Ugl00] in terms of quantum affine
algebras.
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Commuting action on Fock space Fn

Fn is defined as certain directed limit of “double wedge spaces”.
Consider a standard representation V(εm) of Uq(gl≥m) and V(ε̇1) of
Up(gln). Define:

Ak(V(εm), V(ε̇1)) := (V(εm)⊗ V(ε̇1))⊗k
/ k−1∑

i=1

im(Ri,i+1 − Ṙi,i+1),

and
∧

[m,∞),n :=
⊕

kAk(V(εm), V(ε̇1)). Here R and Ṙ are universal
R-matrices for V(εm) and V(ε̇1), respectively.

Then Fn is defined to be a directed limit of∧
[m,∞),n

// ∧
[m−1,∞),n

w � // w ∧ w{m}×[1,n]

as m→ −∞. Here w{m}×[1,n] denotes an element of
∧

[m−1,∞),n that
has “black dots in coordinates {m} × [1,n]”.
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R-matrices for V(εm) and V(ε̇1), respectively.

Then Fn is defined to be a directed limit of∧
[m,∞),n

// ∧
[m−1,∞),n

w � // w ∧ w{m}×[1,n]

as m→ −∞. Here w{m}×[1,n] denotes an element of
∧

[m−1,∞),n that
has “black dots in coordinates {m} × [1,n]”.

22



Crystal base of Fn

There are some caveats on defining crystal operators on Fn. We
need crystal operators on Fn with respect to Up(gln) as well as
Uq(gl∞) that commutes with each other.

• For Uq(gl∞), we use the standard crystal operators ẽlow, f̃ low.

• For Up(gln), we use a pullback of ˙ẽup,
˙f̃ up under an isomorphism

of Q-algebras ψ : Uq(gln) → Up(gln), sending ei, fi 7→ ei, fi,
qh 7→ p−h, and q 7→ p−1.

Because p is not mapped to −q−1, this does not extends to an
algebra morphism Uq(gl∞)⊗ Uq(gln) → Uq(gl∞)⊗ Up(gln), but
nevertheless, these give commuting crystal operators on Fn, and
L(Fn) are stable under these operators.
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Semisimple decomposition of Fn

Having a crystal base (L(Fn),B(Fn)), a standard argument using
combinatorics of B(Fn) yields a decomposition:

Fn ∼=
⊕
λ∈Zn+

V(Λλ)⊗ V(ε̇λ),

B(Fn) ∼=
⊔
λ∈Zn+

B(Λλ)⊗ B(ε̇λ).

This can be seen as a quantum analogue of the Howe duality, or
level-rank duality.

Here, Zn+ is the set of integer partitions of length n, and

Λλ =

`(λ)∑
i=1

Λλi , ελ =

`(λ)∑
i=1

ελi

For µ, ν ∈ P , Let λn be an integer partition of length n obtained by
joining µ and −ν , and λ = λ`(µ)+`(ν). We also write:
Λµ,ν = Λλ, ε

n
µ,ν = ελn , εµ,ν = ελ. 24



Embedding extremal weight modules into Fock spaces

Fock spaces are nice, because it allows one to embed any highest
weight gln-modules into it and get a concrete realization of crystal
bases.

In order to study integrable modules of Uq(gl>0), we want a variant
of Fock space that would correspond to the n→ ∞ limit.

It was observed in [Kwo09] and [Kwo11] that the abstract crystal
B(Fn) admits a limit, which was used to compute decomposition
numbers of tensor products of extremal weight crystals for type A+∞

and A∞.

It was also observed in loc. cit. that B(ε∅,ν)⊗ B(εµ,∅) ∼= B(εµ,ν), but
B(εµ,∅)⊗ B(ε∅,ν) only contains B(εµ,ν) as a connected component.
Note that this implies that L(ε∅,ν)⊗ L(εµ,∅) is a saturated crystal
lattice with respect to V(εµ,ν).
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Parabolic boson algebras



Boson algebras and B(∞)

In the original work [Kas91], the crystal base of U−
q (g) were

constructed by treating it as a module over a different algebra called
the boson algebra Bq(g).

It is generated by e′i , fi (i ∈ I) subject to the following relations:

e′ifj = q〈hi,αj〉i fje′i + δij, Serreij(e′i , e
′
j) = Serreij(fi, fj) = 0

where
Serreij(x, y) =

∑
k+l=−〈hi,αj〉−1

(−1)kx(k)yx(l)

There exists an action of Bq(g) on U−
q (g). In fact, any “finitely

dominated” representation of Bq(g) are just direct sums of U−
q (g)’s.
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Boson algebras: sl2 case

To define crystal operators for Bq(sl2)-modules, we use the following
basis:

v0

[1]q

1

v−2

[2]q

q−1

v−4

[3]q

q−2

v−6

[4]q

q−3

v−8

[5]q

q−4

· · ·
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Parabolic boson algebras

The parabolic boson algebra is an amalgamation of Bq(g) and Uq(g).

A parabolic subalgebra p ⊂ g is associated to a subset J ⊂ I of the
Dynkin diagram. Let PJ, P∨J be the weight and coweight lattices its
Levi part.

We define Uq(g, p) to be an associative Q(q)-algebra generated by
e′i , ej, fl,q

h for i ∈ Jc, j ∈ J, l ∈ I, and h ∈ P∨J with relations:

ejfl − flej = δjl
tj − t−1j
qj − q−1j

, e′ifl = q−〈hi,αl〉fle′i + δil,

Serrei1,i2(e
′
i1 , e

′
i2) = Serrel1,l2(fl1 , fl2) = Serrej1,j2(ej1 , ej2) = 0,

Serre−i,j(e
′
i , ej) = Serre+j,i(ej, e

′
i) = 0,

where

Serre±i,j(x, y) =
∑

k+l=−〈hi,αj〉−1

(−1)kq±k〈hi,αj〉i x(k)yx(l)
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U−
q (g)-comodule structure

There exists an algebra homomorphism:

∆ : Uq(g, p) Uq(g)⊗ Uq(g, p)

qh qh ⊗ qh,

e′i −(qi − q−1i )tiei ⊗ 1+ ti ⊗ e′i ,

ej ej ⊗ t−1j + 1⊗ ej,

fl fl ⊗ 1+ tl ⊗ fl.

Thus, given a Uq(g, p)-module V and Uq(g)-module W, V ⊗W has a
natural structure of a Uq(g, p)-module.
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Integrable modules of Uq(g, p)

Let O be the category of Uq(g, p)-modules V such that

1. V has a weight space decomposition with respect to U0q(g, p),
2. given v ∈ V , U+

q (g, p)βv = 0 for all but finitely many β ∈ Q+,

and let Oint be the subcategory of O consisting of V such that

3. V is integrable as a Uq(l)-module.

For λ ∈ P+J , the parabolic Verma module VJ(λ) = U−
q (g)⊗U−

q (l) Vl(λ)
carries an action of Uq(g, p).

Theorem (Complete reducibility, Kwon-L.)

The category Oint is semisimple with irreducibles VJ(λ) for λ ∈ P+J .

We use an analogue of quantum Casimir operator Ω, which lives in a
certain completion of Uq(g, p).
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Crystal bases of integrable Uq(g, p)-modules

Properties of crystal bases of integrable Uq(g)-modules directly
transfer to Uq(g, p)-modules.

• The image of L(∞) under U−
q (g) → VJ(λ) is a crystal lattice,

which we denote by LJ(λ).
• The image of B(∞) can be identified with

BJ(λ) :=
{
b ∈ B(∞) | ε∗j (b) ≤ 〈hj, λ〉 for all j ∈ J

}
.

• Crystal bases of an object of Oint are unique up to isomorphism.
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• The image of B(∞) can be identified with

BJ(λ) :=
{
b ∈ B(∞) | ε∗j (b) ≤ 〈hj, λ〉 for all j ∈ J

}
.
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Fock space of infinite level



A directed system

Consider a parabolic subalgebra of sl∞ corresponding to a subset
J = Z \ {0}. We denote this parabolic boson algebra by Uq(sl∞,0),
and denote VJ, LJ, BJ by V0, L0, B0, respectively.

DenoteM = V0(0), the irreducible representation of Uq(sl∞,0)

associated to the weight 0.

F ⊗M has an action of Uq(sl∞,0), and |0〉 ⊗ 1 is a highest weight
vector of weight 0 (under the quotient P→ PJ). Thus, F ⊗M has a
direct summandM, and there exists an inclusion

φ : M F ⊗M

1 |0〉 ⊗ 1

By applying Fn ⊗− to the left, we get a directed system of
Uq(sl∞,0)-modules φn : Fn ⊗M → Fn+1 ⊗M.
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The Fock space of infinite level

We define
F∞ ⊗M := lim−→

n
Fn ⊗M.

The action of Up(gln) on Fn ⊗M commutes with φn, so F∞ ⊗M
carries a commuting Up(gl>0)-action.

Fn ⊗M has a crystal base L(Fn ⊗M) = L(Fn)⊗ L(M) and
B(Fn ⊗M) = B(Fn)⊗ B(M). The directed system is compatible
with the them, so we get a limit (L(F∞ ⊗M),B(F∞ ⊗M)).

This crystal is isomorphic to a limit of B(Fn) considered in [Kwo09],
and in particular,

B(F∞ ⊗M) ∼=
⊔

µ,ν∈P
B0(Λµ,ν)⊗ B(ε̇µ,ν).

33



The Fock space of infinite level

We define
F∞ ⊗M := lim−→

n
Fn ⊗M.

The action of Up(gln) on Fn ⊗M commutes with φn, so F∞ ⊗M
carries a commuting Up(gl>0)-action.

Fn ⊗M has a crystal base L(Fn ⊗M) = L(Fn)⊗ L(M) and
B(Fn ⊗M) = B(Fn)⊗ B(M). The directed system is compatible
with the them, so we get a limit (L(F∞ ⊗M),B(F∞ ⊗M)).

This crystal is isomorphic to a limit of B(Fn) considered in [Kwo09],
and in particular,

B(F∞ ⊗M) ∼=
⊔

µ,ν∈P
B0(Λµ,ν)⊗ B(ε̇µ,ν).

33



The Fock space of infinite level

We define
F∞ ⊗M := lim−→

n
Fn ⊗M.

The action of Up(gln) on Fn ⊗M commutes with φn, so F∞ ⊗M
carries a commuting Up(gl>0)-action.

Fn ⊗M has a crystal base L(Fn ⊗M) = L(Fn)⊗ L(M) and
B(Fn ⊗M) = B(Fn)⊗ B(M). The directed system is compatible
with the them, so we get a limit (L(F∞ ⊗M),B(F∞ ⊗M)).

This crystal is isomorphic to a limit of B(Fn) considered in [Kwo09],
and in particular,

B(F∞ ⊗M) ∼=
⊔

µ,ν∈P
B0(Λµ,ν)⊗ B(ε̇µ,ν).

33



The Fock space of infinite level

We define
F∞ ⊗M := lim−→

n
Fn ⊗M.

The action of Up(gln) on Fn ⊗M commutes with φn, so F∞ ⊗M
carries a commuting Up(gl>0)-action.

Fn ⊗M has a crystal base L(Fn ⊗M) = L(Fn)⊗ L(M) and
B(Fn ⊗M) = B(Fn)⊗ B(M). The directed system is compatible
with the them, so we get a limit (L(F∞ ⊗M),B(F∞ ⊗M)).

This crystal is isomorphic to a limit of B(Fn) considered in [Kwo09],
and in particular,

B(F∞ ⊗M) ∼=
⊔

µ,ν∈P
B0(Λµ,ν)⊗ B(ε̇µ,ν).

33



Isotypic decomposition of F∞ ⊗M

We exploit the semisimplicity of Uq(sl∞,0) to transfer structure of
F∞ ⊗M to Up(gl>0)-modules. The isotypic decomposition of
F∞ ⊗M is a starting point.

Theorem (Kwon-L.)

F∞ ⊗M ∼=
⊕
µ,ν∈P

V0(Λµ,ν)⊗
(
V(ε̇∅,ν)⊗ V(ε̇µ,∅)

)
.

Here, all ⊗ are lower comultiplications.

Note that the multiplicity space is ‘larger’ than V(ε̇µ,ν).
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Isotypic decomposition of F∞ ⊗M

Indeed, it is easy to describe a submodule (F∞ ⊗M)0 which realizes
multiplicity spaces V(ε̇µ,ν).

In the isomorphism

B(F∞ ⊗M) ∼=
⊔

µ,ν∈P
B0(Λµ,ν)⊗ B(ε̇µ,ν),

vΛµ,ν ⊗ vε̇µ,ν corresponds to a unique highest weight element of
B(F`(µ)+`(ν)) with weight (Λµ,ν , ε̇µ,ν).

We let (F∞ ⊗M)0 be the submodule generated by lifts of these
crystal basis elements. Then

(F∞ ⊗M)0 ∼=
⊕
µ,ν∈P

V0(Λµ,ν)⊗ V(ε̇µ,ν),

B((F∞ ⊗M)0) ∼=
⊔

µ,ν∈P
B0(Λµ,ν)⊗ B(ε̇µ,ν).

Thus, a proper inclusion (F∞ ⊗M)0 ↪→ (F∞ ⊗M) induces an
isomorphism of crystals.
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Socle of F∞ ⊗M

This fits into our earlier framework: L(F∞ ⊗M) is saturated with
respect to (F∞ ⊗M)0.

Recall that it is natural to consider saturated crystal lattices with
respect to a socle, but in this case, we do not (yet) know if
(F∞ ⊗M)0 is a socle of F∞ ⊗M.

It turned out that, the existence of a saturated crystal lattice is a
pretty strong constraint, and we can prove that (F∞ ⊗M)0 is a socle
of F∞ ⊗M from this fact. We are reversing the order of arguments!
The compatibility of crystal bases with isotypic component
decomposition (and its version for Uq(sl∞,0)⊗Up(gln)) is crucial here.

By passing to multiplicity spaces, this implies

soc(V(εµ,∅)⊗ V(ε∅,ν)) = V(εµ,ν).
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Crystal valuations and socle
filtration of F∞ ⊗M



Socle filtration of F∞ ⊗M

We pushed this idea further, and constructed a filtration
(F∞ ⊗M)≥−d (d ≥ 0) of F∞ ⊗M.

Theorem (Kwon-L.)

The subquotients of the filtration is given by

(F∞ ⊗M)≥−d

(F∞ ⊗M)>−d
∼=

⊕
(µ,ν)≤(ζ,η)

|ζ|−|µ|=|η|−|ν|=d

V0(Λζ,η)⊗ V(ε̇µ,ν)⊕n
µ,ν
ζ,η

Here, we are considering a partial order on P2 defined by

(µ, ν) ≤ (ζ, η) ⇐⇒ ζ ⊃ µ, η ⊃ ν, and |ζ| − |µ| = |η| − |ν|.

Also,
nµ,νζ,η =

∑
σ

cµσ,ζc
ν
σ,η,

where cµσ,ζ is the Littlewood-Richardson coefficient.
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Saturated crystal valuations on socle quotients of F∞ ⊗M

Moreover, we constructed a crystal valuation v∞
−d on

F∞ ⊗M
(F∞ ⊗M)>−d

.

Theorem (Kwon-L.)

v
∞
−d is saturated with respect to

(F∞ ⊗M)≥−d

(F∞ ⊗M)>−d
.

Corollary

(F∞ ⊗M)≥−d the socle filtration of F∞ ⊗M.
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Construction of (F∞ ⊗M)≥−d

Each Fn ⊗M are semisimple; It admits the following isotypic
decomposition.

Fn ⊗M ∼=
⊕

(µ,ν),(ζ,η)∈P2

V0(Λζ,η)⊗ V(ε̇nµ,ν)
hn,(µ,ν)
(ζ,η) ,

where the multiplicity hn,(µ,ν)(ζ,η) is read off from crystal:

hn,(µ,ν)(ζ,η) = #
{
highest weight elements of B(Fn ⊗M) of weight Λζ,η,

whose B(Fn)-component is Mn(µ, ν)
}
.

Let us denote the above isotypic component by (Fn ⊗M)
(ζ,η)
(µ,ν).
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Construction of (F∞ ⊗M)≥−d

We study the behavior of (Fn ⊗M)
(ζ,η)
(µ,ν) under the directed system.

Lemma

1. (Fn ⊗M)
(ζ,η)
(µ,ν) 6= 0 only if (ζ, η) ≥ (µ, ν).

2. (Fn ⊗M)
(ζ,η)
(µ,ν) ⊂ (Fn+1 ⊗M)

(ζ,η)
≥(µ,ν).

Here, (Fn ⊗M)
(ζ,η)
≥(µ,ν) =

⊕
(σ,τ)≥(µ,ν)(Fn ⊗M)

(ζ,η)
(σ,τ).

Therefore, a directed system
{
(Fn ⊗M)

(ζ,η)
≥(µ,ν)

}
is well-defined,

whose limit is a subset of F∞ ⊗M, denoted by (F∞ ⊗M)
(ζ,η)
≥(µ,ν).

Finally, for d ∈ Z≥0,

(Fn ⊗M)≥−d :=
⊕

(ζ,η)≥(µ,ν)
|ζ|−|µ|=|η|−|ν|≤d

(Fn ⊗M)
(ζ,η)
≥(µ,ν).

40



Construction of (F∞ ⊗M)≥−d

We study the behavior of (Fn ⊗M)
(ζ,η)
(µ,ν) under the directed system.

Lemma

1. (Fn ⊗M)
(ζ,η)
(µ,ν) 6= 0 only if (ζ, η) ≥ (µ, ν).

2. (Fn ⊗M)
(ζ,η)
(µ,ν) ⊂ (Fn+1 ⊗M)

(ζ,η)
≥(µ,ν).

Here, (Fn ⊗M)
(ζ,η)
≥(µ,ν) =

⊕
(σ,τ)≥(µ,ν)(Fn ⊗M)

(ζ,η)
(σ,τ).

Therefore, a directed system
{
(Fn ⊗M)

(ζ,η)
≥(µ,ν)

}
is well-defined,

whose limit is a subset of F∞ ⊗M, denoted by (F∞ ⊗M)
(ζ,η)
≥(µ,ν).

Finally, for d ∈ Z≥0,

(Fn ⊗M)≥−d :=
⊕

(ζ,η)≥(µ,ν)
|ζ|−|µ|=|η|−|ν|≤d

(Fn ⊗M)
(ζ,η)
≥(µ,ν).

40



Construction of (F∞ ⊗M)≥−d

We study the behavior of (Fn ⊗M)
(ζ,η)
(µ,ν) under the directed system.

Lemma

1. (Fn ⊗M)
(ζ,η)
(µ,ν) 6= 0 only if (ζ, η) ≥ (µ, ν).

2. (Fn ⊗M)
(ζ,η)
(µ,ν) ⊂ (Fn+1 ⊗M)

(ζ,η)
≥(µ,ν).

Here, (Fn ⊗M)
(ζ,η)
≥(µ,ν) =

⊕
(σ,τ)≥(µ,ν)(Fn ⊗M)

(ζ,η)
(σ,τ).

Therefore, a directed system
{
(Fn ⊗M)

(ζ,η)
≥(µ,ν)

}
is well-defined,

whose limit is a subset of F∞ ⊗M, denoted by (F∞ ⊗M)
(ζ,η)
≥(µ,ν).

Finally, for d ∈ Z≥0,

(Fn ⊗M)≥−d :=
⊕

(ζ,η)≥(µ,ν)
|ζ|−|µ|=|η|−|ν|≤d

(Fn ⊗M)
(ζ,η)
≥(µ,ν).

40



Construction of (F∞ ⊗M)≥−d

We study the behavior of (Fn ⊗M)
(ζ,η)
(µ,ν) under the directed system.

Lemma

1. (Fn ⊗M)
(ζ,η)
(µ,ν) 6= 0 only if (ζ, η) ≥ (µ, ν).

2. (Fn ⊗M)
(ζ,η)
(µ,ν) ⊂ (Fn+1 ⊗M)

(ζ,η)
≥(µ,ν).

Here, (Fn ⊗M)
(ζ,η)
≥(µ,ν) =

⊕
(σ,τ)≥(µ,ν)(Fn ⊗M)

(ζ,η)
(σ,τ).

Therefore, a directed system
{
(Fn ⊗M)

(ζ,η)
≥(µ,ν)

}
is well-defined,

whose limit is a subset of F∞ ⊗M, denoted by (F∞ ⊗M)
(ζ,η)
≥(µ,ν).

Finally, for d ∈ Z≥0,

(Fn ⊗M)≥−d :=
⊕

(ζ,η)≥(µ,ν)
|ζ|−|µ|=|η|−|ν|≤d

(Fn ⊗M)
(ζ,η)
≥(µ,ν).
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Constructing crystal valuation (or reversing arguments once more)

In case of d = 0, we already had a crystal lattice of F∞ ⊗M, this is
the virtue of Fock spaces. Let’s analyze its behavior in more detail.

The map
φ : B(M) → B(F)⊗ B(M)

increases the weight of the B(M), except for 1 ∈ B(M). Thus, every
element of B(F∞ ⊗M) has a representative of a form
b⊗ 1 ∈ B(Fn ⊗M) for sufficiently large n.

B(Fn ⊗M) ∼=
⊔

(ζ,η)≥(µ,ν),
`(µ)+`(ν)≤n

B0(Λζ,η)⊗ B(ε̇nµ,ν)
hn,(µ,ν)
(ζ,η) .

Since b⊗ 1 is connected to a highest weight element of a form b′ ⊗ 1,
it is contained in a connected component isomorphic to
B(Λζ,η)⊗ B(ε̇nζ,η).
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Constructing crystal valuation (or reversing arguments once more)

This purely crystal-theoretic phenomenon can be interepreted in
terms of ambient modules as follows:

Let

πn−d : Fn ⊗M → (Fn ⊗M)−d :=
⊕

(ζ,η)≥(µ,ν)
|ζ|−|µ|=|η|−|ν|=d

(Fn ⊗M)
(ζ,η)
(µ,ν)

be the projection onto isotypic components.

Observation

For any x ∈ L(F∞ ⊗M),

πn0(x) ∈ L(Fn ⊗M), πn−d(x) ∈ qL(Fn ⊗M) (d > 0),

for all sufficiently large n.
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Constructing crystal valuation (or reversing arguments once more)

Let v be the crystal valuation of F∞ ⊗M associated to L(F∞ ⊗M).
Let

v
n
−d := v ◦ πn−d.

The previous observation can be recast as:

Observation

For any x ∈ F∞ ⊗M,

lim
n→∞

v
n
0(x) = v(x).

We conjectured that this pattern continues.
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Defining v∞
−d as a limit

Theorem (Kwon-L.)

Let x ∈ F∞ ⊗M be given. Then the limit

v
∞
−d(x) := lim

n→∞

(
v
n
−d(x)− dn

)
exists and lies in Z t {∞}. Moreover, v∞

−d(x) is finite if and only if
x 6∈ (F∞ ⊗M)>−d.

Corollary

v
∞
−d induces a well-defined crystal valuation on

F∞ ⊗M
(F∞ ⊗M)>−d

.
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Remark on the proof of the theorem

Its proof is based on the following key lemmas controlling the
asymptotic growth of vnd(x). Let (ζ, η) ∈ P2 be given.

Lemma

1. For all sufficiently large n, for all x ∈ (Fn ⊗M)
(ζ,η)
−d , we have

v
n+1
−d (x) = v

n
−d(x) + d.

2. For all sufficiently large n and N, for all x ∈ (Fn ⊗M)
(ζ,η)
−d , we

have
v
n+N
−d+1(x) ∈ v

n
−d(x) + N(d− 1) + [r1, r2],

where [r1, r2] is an interval independent of x, n and N, depending
only on (ζ, η).

These lemmas make heavy use of crystal base theory and the theory
of parabolic boson algebras.
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Parabolic q-derivations

The second statement essentially follows from a non-vanishing
property of parabolic analogue of q-derivations.

For an arbitrary Uq(g, p), let us denoteMJ := VJ(0). TreatingMJ as a
Uq(l)-module, it has one copy of Vl(−αi) (i ∈ Jc) in it.

There exists a Uq(g)-linear mapMJ → MJ ⊗MJ sending 1 7→ 1⊗ 1.

r±i : MJ MJ ⊗± MJ MJ ⊗± Vl(−αi),

ir± : MJ MJ ⊗± MJ Vl(−αi)⊗± MJ.

1⊗πi

πi⊗1

These are direct analogues of q-derivations in [Lus10], or operators
e′i , e

′′
i ’s in [Kas91].

Lemma

If u ∈ MJ satisfies r+i (u) = 0 for all i ∈ Jc, then u is a scalar multiple
of 1. The same holds for r−i , ir

+, and ir−.
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Saturatedness of v∞
−d

Theorem (Kwon-L.)

The crystal valuation v∞
−d on

F∞ ⊗M
(F∞ ⊗M)>−d

is saturated with

respect to
(F∞ ⊗M)≥−d

(F∞ ⊗M)>−d
.

By passing to multiplicity spaces, we obtain the corollary that
(F∞ ⊗M)≥−d is the socle filtration of F∞ ⊗M.
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Remark on possibly non-free A0 modules

Because the crystal valuation is defined as a limit, we had to
abandon freeness, and this was our motivation for introducing
crystal valuation.

We needed compatibility of crystal bases with isotypic
decomposition in the proof that ‘an existence of saturated crystal
valuation implies socle’. We have verified that this still holds in
crystal valuations, without freeness, and even without the existence
of a basis B.
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Passing to multiplicity spaces

Corollary

The Loewy length of a Uq(gl>0)-module V(εµ,∅)⊗ V(ε∅,ν) is
min(|µ|, |ν|) + 1, and its subquotients are given by

socd+1
(
V(εµ,∅)⊗ V(ε∅,ν)

)
socd

(
V(εµ,∅)⊗ V(ε∅,ν)

) ∼=
⊕

(µ,ν)≥(ζ,η)
|µ|−|ζ|=|ν|−|η|=d

V⊕nµ,νζ,η
ζ,η ,

Corollary

The Loewy length of a Uq(gl>0)-module V(εα,β)⊗ V(εγ,δ) is
min(|α|+ |γ|, |β|+ |δ|) + 1, and its subquotients are given by

socd+1 (V(εα,β)⊗ V(εγ,δ))
socd (V(εα,β)⊗ V(εγ,δ))

∼=
⊕
φ,ψ∈P

|φ|=M−d, |ψ|=N−d

V
⊕c(φ,ψ)

(α,β)(γ,δ)

φ,ψ ,
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Passing to multiplicity spaces

Corollary

V(εµ,∅)⊗ V(ε∅,ν)
socd

(
V(εµ,∅)⊗ V(ε∅,ν)

) has a saturated crystal valuation.

Putting µ = ν = (1) and d = 0 to the last corollary recovers the
saturated crystal valuation LN of V(ε1)⊗ V(−ε1) constructed in the
first section of this talk.

We do not (yet) know whether saturated crystal valuations exist in
V(εα,β)⊗ V(εγ,δ)

socd (V(εα,β)⊗ V(εγ,δ))
or not, but low rank calculations suggests

that they do.
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Final remarks

• Beyond low rank cases, we do not have an effective algorithm to
determine whether a given element belongs to the
A0-submodule or not.

• We expect that there are abundance of saturated crystal
valuations. It would be interesting to study them for other
infinite affine or affine types, which will provide us a better
understanding of their internal structures.
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Thank you for your attention!
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