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Q: What is Galois cohomology?

A: Galois (Group) cohomology, i.e., group cohomology for certain Galois group.

Q: What is Group cohomology?

A: Cohomology theory for G-modules...

Q: What is Cohomology theory...?
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Goals of this talk

Introduce Galois cohomology and provide two applications for Prof. Kim’s talk.

Theorem A (Kummer Theory)

Let K be a number field and suppose that µn ⊂ K. Then we have an isomorphism:

Φ : K×/(K×)n → Hom(GK , µn),

where GK := Gal(K/K) is the absolute Galois group of K.

Theorem B (Weak Mordell–Weil Theorem)

Let E be an elliptic curve over a number field K. Then E(K)/nE(K) is finite for any n ≥ 2.
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Part I: Galois cohomology



étale cohomology Galois cohomology Group cohomology

Q: What do we expect about cohomology theory?

G a group, M a G-module 7−→ Hi(G,M) an abelian group.
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∀ a short exact sequence of G-modules:

0 L M N 0,

∃ a long exact sequence of G-modules:

0 H0(G,L) H0(G,M) H0(G,N)

H1(G,L) H1(G,M) H1(G,N)

H2(G,L) H2(G,M) H2(G,N)

H3(G,L) · · ·
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G-modules: abelian groups having an action of a group G.

e.g. µn the group of n-th roots of unity, action of GQ = Gal(Q/Q) or G = Gal(Q(µn)/Q).

ζn a primitive n-th root of unity 7−→ 〈ζn〉 ' µn.

∀σ ∈ GQ, σ(ζn) = ζkn for some integer k.

The action of GQ on µn factors through G and so Hi(GQ, µn) = Hi(G,µn).

Q: Can we compute Hi(GQ, µn)?

We didn’t define these groups yet....
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Let A and B be two abelian categories. Suppose that A has enough injectives.
Then for a left exact functor F : A → B, there is a functor

RiF : A → B

such that ∀ a short exact sequence in A

0 A B C 0,

∃ a long exact sequence in B

0 F (A) F (B) F (C)

R1F (A) R1F (B) R1F (C)

R2F (A) R2F (B) · · ·
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Construction

Choose an injective resolution of an object A ∈ A

0 A I0 I1 I2 I3 · · ·

We then obtain a cochain complex

0 F (I0) F (I1) F (I2) F (I3) · · ·

Finally, RiF (A) is defined as its cohomology at the i-th spot.

This construction does not depend on the choice of a resolution!
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Group cohomology

Let Mod(G) be the category of G-modules, or equivalently Z[G]-modules.

Also, let Mod(Z) be the category of abelian groups, or equivalently Z-modules.

Consider the functor F = (−)G : Mod(G) → Mod(Z).

Exercise

Prove that F is left exact.

Definition

For a G-module M , the i-th cohomology group Hi(G,M) is defined as

Hi(G,M) := RiF (M).
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Real life: How to compute it?

H0(GQ, µn) = µ
GQ
n = 1“ = ”0

H1(GQ, µn) =? H2(GQ, µn) =?
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Another look

Q: What is the functor (−)G?

A: MG = HomZ[G](Z,M)

Theorem

Let
· · · P 3 P 2 P 1 P 0 Z 0

be a projective resolution of Z. Then Hi(G,M) is equal to the i-th cohomology of the cochain
complex

· · · HomZ[G](P
2,M) HomZ[G](P

1,M) HomZ[G](P
0,M) 0.

11 / 34



Another look

Q: What is the functor (−)G?

A: MG = HomZ[G](Z,M)

Theorem

Let
· · · P 3 P 2 P 1 P 0 Z 0

be a projective resolution of Z. Then Hi(G,M) is equal to the i-th cohomology of the cochain
complex

· · · HomZ[G](P
2,M) HomZ[G](P

1,M) HomZ[G](P
0,M) 0.

11 / 34



Another look

Q: What is the functor (−)G?

A: MG = HomZ[G](Z,M)

Theorem

Let
· · · P 3 P 2 P 1 P 0 Z 0

be a projective resolution of Z. Then Hi(G,M) is equal to the i-th cohomology of the cochain
complex

· · · HomZ[G](P
2,M) HomZ[G](P

1,M) HomZ[G](P
0,M) 0.

11 / 34



Namely, if
P • → Z → 0 and 0 → M → I•

are two (projective and injective) resolutions, then the i-th cohomologies of the following
two cochain complexes are equal:

HomZ[G](P
•,M) and HomZ[G](Z, I

•).

There is a very good free resolution of Z!

Exercise

Study the standard complex or bar resolution.
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Alternative definition of H1

Let G be a finite group acting on an abelian group M . A crossed homomorphism is a map
f : G → M such that

f(στ) = f(σ) + σ · f(τ) for all σ, τ ∈ G

and it is said to be principal if there is an element m ∈ M such that

f(σ) = σ ·m−m for all σinG.

We then have
H1(G,M) =

crossed homomorphisms
principal crossed homomorphisms .

By definition, if G acts trivially on M , then we have

H1(G,M) = Hom(G,M)
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Change the group

Let λ : H → G be a group homomorphism. Then λ gives rise to an exact functor

Φλ : Mod(G) → Mod(H)

because every G-module can be considered as a H-module via λ. In particular, if H is a
subgroup of G, then we have

resGH : Hi(G,M) → Hi(H,M).

Also, if N is a normal subgroup of G, then we may take (G,H) = (G/N,G) (and λ is the
quotient map), and hence we obtain

infG/N
G : Hi(G/N,MN ) → Hi(G,MN ) → Hi(G,M).
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Inflation and Restriction

Theorem

Let G be a group and N a normal subgroup. Then for M ∈ Mod(G) we have an exact
sequence

0 H1(G/N,MN ) H1(G,M) H1(N,M)G/N

H2(G/N,MN ) H2(G,M).

inf res

inf

Exercise

Study the Grothendieck spectral sequence.
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Part II: Applications



Hilbert’s Theorem 90

Theorem (Kummer, Hilbert, Noether)

Let L/K be a finite Galois extension with Galois group G. Then H1(G,L×) = 0.

Proof. Let f : G → L× be a crossed homomorphism. In multiplicative notation, this
means that for any σ, τ ∈ G, we have f(στ) = f(σ)σ(f(τ)) or equivalently

σ(f(τ)) = f(σ)−1f(στ) ,

and we have to find m ∈ L× such that f(σ) = σ(m)/m for all σ ∈ G.

Lemma (Dedekind)

Let L/K be a finite Galois extension. Then distinct elements of Gal(L/K) are linear inde-
pendent over L.
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As f(τ) ∈ L× is nonzero, the above lemma implies that∑
τ∈G

f(τ) · τ : L → L

is not a zero map, i.e., there exists an α ∈ L such that

β :=
∑

τ∈G
f(τ) · τ(α) 6= 0.

But then, for σ ∈ G, we have

σ(β) =
∑

τ∈G
σ(f(τ)) · στ(α)

=
∑

τ∈G
f(σ)−1f(στ) · στ(α)

= f(σ)−1
∑

τ∈G
f(στ) · στ(α) = f(σ)−1β

as τ runs over G, so also does στ . Thus, we have f(σ) = β/σ(β) = σ(β−1)/β−1.
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Infinite Galois theory

Let L/K be a Galois extension with infinite Galois group G and M a G-module. The group
G has natural profinite topology, i.e., basic open sets of G are those subgroups H < G

which have finite index in G. We then define the cohomology groups of G with coefficients
in A as

Hi(G,M) := lim−→ Hi(G/H,MH),

where H runs through all open subgroups of G. (Use the inflation maps!)

Theorem

Let L/K be an infinite Galois extension with Galois group G. Then H1(G,L×) = 0.

Proof.
Exercise!
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Classification of quadratic / cubic extensions

Question

Can we classify all the quadratic extensions of Q?

Question

Can we classify all the cubic extensions of Q?
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Kummer theory

Suppose that K is a number field containing a primitive n-th root of unity ζn, or
equivalently µn ⊂ K for a given integer n ≥ 2. Then we can easily classify abelian
extensions of exponent n in terms of some data related to K× (cf. CFT).

More precisely, for any a ∈ K×, the field L = K( n
√
a) is the splitting field of f(x) = xn − a

over K; the notation n
√
a denotes a particular primitive n-th root of a, but it does not matter

which root we pick because µn ⊂ K (and so all the n-th roots of a are of the form ζkn
n
√
a).

Note that L is a Galois extension of K, and Gal(L/K) is cyclic as we have an injective
homomorphism:

Gal(L/K) µn ' Z/nZ

σ σ( n
√
a)

n
√
a

This homomorphism is an isomorphism if and only if xn − a is irreducible.
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Lemma

Let L/K be a cyclic field extension of degree n with Galois group 〈σ〉 and suppose that L
contains a primitive n-th root of unity ζn. Then σ(α) = ζnα for some α ∈ L.

Proof.
The automorphism σ is a linear transformation of L with characteristic polynomial xn − 1;
by the above lemma by Dedekind it must be its minimal polynomial, since
{1, σ, σ2, . . . , σn−1} is linearly independent. Thus, ζn is an eigenvalue of σ.
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Classification of cyclic extensions

Theorem (classification)

Let K be a number field containing a primitive n-th root of unity ζn. If L/K is a cyclic extension
of degree n, then L = K( n

√
a) for some a ∈ K×.

Proof.
By the above lemma, there is an element α ∈ L for which σ(α) = ζnα. We have

σ(αn) = σ(α)n = (ζnα)
n = αn,

thus a = αn is invariant under the action of 〈σ〉 = Gal(L/K) and thus lies in K. Moreover,
the orbit {α, ζα, . . . , ζn−1α} of α under the action of Gal(L/K) has order n, so

L = K(α) = K( n
√
a).
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Kummer pairing

Definition

Let K be a number field and assume that ζn ∈ K. The Kummer pairing is the map

〈−,−〉 : Gal(K/K)×K× 〈ζn〉 = µn

〈σ, a〉 σ( n
√
a)

n
√
a

which is well-defined. Indeed, if α and β are two n-th roots of a, then (α/β)n = 1 and so
α/β ∈ 〈ζn〉 ⊂ K is fixed by σ. Thus,

σ(β)/β = σ(β)/β · σ(α/β)/(α/β) = σ(α)/α

and the value of 〈σ, a〉 does not depend on the choice of n
√
a.
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First Proof of Theorem A

From the Kummer pairing, we have a natural map sending a ∈ K× to (σ 7→ 〈σ, a〉):

Φ : K× → Hom(GK , µn)

It suffices to show that ker(Φ) = (K×)n and Φ is surjective.

1) For each a ∈ K× ∖ (K×)n, if we pick an n-th root α ∈ K, then the extension K(α)/K is
non-trivial and some σ ∈ GK must act nontrivially on α. For this σ, we have 〈σ, a〉 6= 1 and
so a 6∈ ker(Φ). Note that (K×)n ⊂ ker(Φ) is obvious.

2) Surjectivity is an exercise. Use the classification theorem.

24 / 34



Another proof of Theorem A

The multiplicative group K
× is a GK-module and there is an exact sequence of

GK-modules:
0 µn K

×
K

×
0.

(−)n

Taking a long exact sequence of cohomology yields:

0 µGK
n (K

×
)GK (K

×
)GK H1(GK , µn) H1(GK ,K

×
)

µn K× K× Hom(GK , µn) 0

(a)

(−)n

(b) (c) (d) (e)

(−)n

Why? (a), (d) : Note that we assume that µn ⊂ K, and so GK acts trivially on µn.

(b), (c) : Galois theory. (e) : Hilbert’s theorem 90.
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Elliptic curves

Note that the group scheme Gm is used in the previous discussion. A bit more specifically,

Gm(L) = L× and Gm(K) = K
×
.

Other type of group schemes can be used in a similar manner: Let E be an elliptic curve
over a number field K. As above, there is an exact sequence of GK-modules:

0 E[n] E(K) E(K) 0.
×n

Here, E[n] := {P ∈ E(K) : nP = 0} is the group of n-torsion points.
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Taking a long exact sequence of cohomology gives rise to:

0 E[n]GK E(K)GK E(K)GK = E(K)

H1(GK , E[n]) H1(GK , E(K)) H1(GK , E(K)).

×n

×n

Thus, we obtain a short exact sequence:

0 E(K)/nE(K) H1(GK , E[n]) H1(GK , E(K))[n] 0.

If H1(GK , E[n]) were finite, we would be very happy. But unfortunately, it is NOT...
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Local picture

For a prime v, we fix an extension of v to K. We then have a commutative diagram:

K Kv

K Kv
ιv

and so a decomposition group Gv = Gal(Kv/Kv) ⊂ GK . Now Gv acts on E(Kv) and
similarly as above we get:

0 E(Kv)/nE(Kv) H1(Gv, E[n]) H1(Gv, E(Kv))[n] 0.
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Via the maps E(K) ↪→ E(Kv) and Gv ⊂ GK , we get commutative short exact sequences:

0 E(K)/nE(K) H1(GK , E[n]) H1(GK , E(K))[n] 0,

0 E(Kv)/nE(Kv) H1(Gv, E[n]) H1(Gv, E(Kv))[n] 0.

ι

fv
res gv

res

If E has good reduction at v and v ∤ n, then the action of Gv on E[n] is unramified
(Néron–Ogg–Shafarevich criterion) so it factors through the quotient Gv/Iv ' 〈Frobv〉 ' Ẑ.
Furthermore, if E[n] = E(Kv)[n], then

H1(Gv, E[n]) = Hom(Ẑ, (Z/nZ)2) ' (Z/nZ)2

is obviously finite. If fv were injective, we would be very happy. But it is NOT...
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Selmer groups (and TS)

0 E(K)/nE(K) H1(GK , E[n]) H1(GK , E(K))[n] 0,

0 E(Kv)/nE(Kv) H1(Gv, E[n]) H1(Gv, E(Kv))[n] 0.

ι

fv gv

However, since the diagram is commutative any element in the image of ι maps to 0 by gv.
This motivates the following definition...
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Selmer groups (and TS)

Definition

The n-Selmer group of E/K is the group

Sel(n)(E/K) := ker

(
H1(GK , E[n]) →

∏
all v

H1(Gv, E(Kv))

)

and the Tate–Shafarevich group of E/K is the group

III(E/K) := ker

(
H1(GK , E(K)) →

∏
all v

H1(Gv, E(Kv))

)
.
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Proof of Theorem B

From the discussion above, we obtain a short exact sequence:

0 E(K)/nE(K) Sel(n)(E/K) III(E/K)[n] 0.

Theorem C

The group Sel(n)(E/K) is finite. Hence E(K)/nE(K) and III(E/K)[n] are also finite.

Conjecture

The group III(E/K) is finite.
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Sketch of the proof

First, we may consider the finite extension L = K(E[n]) of K. Then it is not hard to prove
that E(K)/nE(K) is finite if E(L)/nE(L) is finite.

Then we construct the same exact sequences for L instead of K. Note that
H1(GL, E[n]) = Hom(GL, E[n]) as GL acts trivally on E[n]. It turns out that an element of
Sel(n)(E/L) (as a subgroup of Hom(GL, E[n])) is a special map from GL to E[n].
Furthermore, such a map corresponds to a finite extension of exponent n of L unramified
outside a finite set S.

Finally, the number of such “unramified” extensions is finite.

Remark

We can directly prove that Sel(n)(E/K) is finite by a similar argument.
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Thank you very much
for your attention!


