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Q: What is Cohomology theory...? I
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Goals of this talk

Introduce Galois cohomology and provide two applications for Prof. Kim’s talk.
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Introduce Galois cohomology and provide two applications for Prof. Kim’s talk.

Theorem A (Kummer Theory)

Let K be a number field and suppose that u,, € K. Then we have an isomorphism:

O K*/(K*)" = Hom(Gk, pin),

where G := Gal(K/K) is the absolute Galois group of K.
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Goals of this talk

Introduce Galois cohomology and provide two applications for Prof. Kim’s talk.

Theorem A (Kummer Theory)

Let K be a number field and suppose that i, C K. Then we have an isomorphism:
O K*/(K*)" = Hom(Gk, pin),

where G := Gal(K/K) is the absolute Galois group of K.

Let E be an elliptic curve over a number field K. Then E(K)/nE(K) is finite for any n > 2.

Theorem B (Weak Mordell-Weil Theorem)
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Part |: Galois cohomology



étale cohomology —— Galois cohomology —— Group cohomology
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étale cohomology —— Galois cohomology —— Group cohomology

Q: What do we expect about cohomology theory?
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étale cohomology —— Galois cohomology —— Group cohomology

Q: What do we expect about cohomology theory?

G a group, M a G-module —

HY (G,M

~—

an abelian group.
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v a short exact sequence of G-modules:

0 L M N 0,
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v a short exact sequence of G-modules:

0 L M N 0,

3 a long exact sequence of G-modules:

0 — H°G,L) —— H°(G,M) —— H°(G,N)
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G-modules: abelian groups having an action of a group G.
e.g. un, the group of n-th roots of unity, action of Gq = Gal(Q/Q) or G = Gal(Q(1,)/Q).

¢, @ primitive n-th root of unity — ((,,) ~ .

Vo € Gq, o(C,) =¢F for some integer k.

n

The action of Gq on u, factors through G and so H(Gq, un) = HY (G, ).
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G-modules: abelian groups having an action of a group G.
e.g. un, the group of n-th roots of unity, action of Gq = Gal(Q/Q) or G = Gal(Q(1,)/Q).

¢, @ primitive n-th root of unity — ((,,) ~ .

Vo € Gq, o(C,) =¢F for some integer k.

n

The action of Gq on u, factors through G and so H(Gq, un) = HY (G, ).

[ Q: Can we compute H'(Gq, fin)? ]

We didn’t define these groups yet....
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Let o7 and % be two abelian categories. Suppose that &7 has enough injectives.

Then for a left exact functor F' : &/ — 4, there is a functor
RF:o - %
such that V a short exact sequence in ./

0 A B C 0,
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Let o7 and % be two abelian categories. Suppose that &7 has enough injectives.

Then for a left exact functor F' : &/ — 4, there is a functor
RF:o - %
such that V a short exact sequence in ./

0 A B C 0,

3 along exact sequence in #

0 —— F(A) — F(B) —— F(C)

R?F(A) —— R*F(B) —— ---
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Construction

Choose an injective resolution of an object A € &/

0 —A—1'—=1I"—1*—1— ...

We then obtain a cochain complex

Finally,

R'F(A)

0 — F(I° — F(I'Y) — F(I?) — F(I?) — -

is defined as its cohomology at the i-th spot.
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Construction

Choose an injective resolution of an object A € &/

0 —A—1'—=1I"—1*—1— ...

We then obtain a cochain complex

Finally,

R'F(A)

0 — F(I° — F(I'Y) — F(I?) — F(I?) — -

is defined as its cohomology at the i-th spot.

This construction does not depend on the choice of a resolution!
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Group cohomology
Let Mod(G) be the category of G-modules, or equivalently Z[G]-modules.

Also, let Mod(Z) be the category of abelian groups, or equivalently Z-modules.
Consider the functor F' = (—)“ : Mod(G) — Mod(Z).
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Group cohomology

Let Mod(G) be the category of G-modules, or equivalently Z[G]-modules.

Also, let Mod(Z) be the category of abelian groups, or equivalently Z-modules.
Consider the functor F' = (—)“ : Mod(G) — Mod(Z).

Prove that F' is left exact.

Definition

For a G-module M, the i-th cohomology group H*(G, M) is defined as

HY(G,M) := R'"F(M).
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Real life: How to compute it?

HO(GQ,/,Ln) — ,LLSQ —1%="Q
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Real life: How to compute it?

[ HO(GQ,,LLn):l,LSQ —1%="Q ]

[ Hl(GQvﬂn) =? HQ(GQMU'TL) =7 ]
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Another look

Q: What is the functor (—)¢?
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Another look

Q: What is the functor (—)¢?

A:4AIG ::Hon1ZKﬂ(Z,A4)

Let

— P - pP?2 Pt 5P 7 0

be a projective resolution of Z. Then H*(G, M) is equal to the i-th cohomology of the cochain
complex

> FknnzKﬂ(Pﬂ,Al) — Fkﬂnzkﬂ(fﬂ,ﬂl) — Fkﬁnzuﬂ(Fw,Al) — 0.
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Namely, if
P*—7Z—-0 and 0— M —I°®

are two (projective and injective) resolutions, then the i-th cohomologies of the following
two cochain complexes are equal:

Homz[G] (P., M) and HomZ[G] (Z, I.).

12/34



Namely, if
P*—-72Z—-0 and 0> M —1I°®

are two (projective and injective) resolutions, then the i-th cohomologies of the following
two cochain complexes are equal:

HOmZ[G](P.,M) and HOmz[G](Z,I.).

There is a very good free resolution of Z!
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Namely, if
P*—+7Z—-0 and 0— M —1I°

are two (projective and injective) resolutions, then the i-th cohomologies of the following
two cochain complexes are equal:

Homz(P*, M) and Homg(Z,1°).

There is a very good free resolution of Z!

Study the standard complex or bar resolution.

12/34



Alternative definition of H!

Let G be a finite group acting on an abelian group M. A crossed homomorphism is a map
f G — M such that

flor)=f(o)+o-f(r) forall o,7 € G
and it is said to be principal if there is an element m € M such that
flo)=0-m—m forall oinG.
We then have

crossed homomorphisms

HY(G,M) = :
(G, M) principal crossed homomorphisms
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Alternative definition of H!

Let G be a finite group acting on an abelian group M. A crossed homomorphism is a map
f G — M such that

flor)=f(o)+o-f(r) forall o,7 € G
and it is said to be principal if there is an element m € M such that
flo)=0-m—m forall ¢inG.
We then have

B crossed homomorphisms
principal crossed homomorphisms’

HY(G,M)

By definition, if G acts trivially on M, then we have

| H'(G, M) = Hom(G, M)
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Change the group

Let A : H — G be a group homomorphism. Then A gives rise to an exact functor
@) : Mod(G) — Mod(H)

because every G-module can be considered as a H-module via A. In particular, if H is a
subgroup of G, then we have

resy : H'(G, M) — H'(H, M).
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Change the group

Let A : H — G be a group homomorphism. Then A gives rise to an exact functor
@) : Mod(G) — Mod(H)

because every G-module can be considered as a H-module via A. In particular, if H is a
subgroup of G, then we have

resy : H'(G, M) — H'(H, M).

Also, if N is a normal subgroup of G, then we may take (G, H) = (G/N,G) (and X is the
quotient map), and hence we obtain

infS/N . H{(G/N, M) — HY(G, MN) — H (G, M).
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Inflation and Restriction

Let G be a group and N a normal subgroup. Then for M € Mod(G) we have an exact
sequence

0 —— HYG/N,MN) ™ HYG, M) —=55 HY(N,M)C/N

H(G/N,MN) ™ H2(G, M)
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Inflation and Restriction

Let G be a group and N a normal subgroup. Then for M € Mod(G) we have an exact
sequence

0 —— HYG/N,MN) ™ gY(G, M) -5 HY(N,M)C/N

HX(G/N, M) " g2(@, M)

\.

Study the Grothendieck spectral sequence.
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Part Il: Applications



Hilbert’s Theorem 90

Theorem (Kummer, Hilbert, Noether)

Let L/K be a finite Galois extension with Galois group G. Then H(G,L*) = 0.
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Hilbert’s Theorem 90

Theorem (Kummer, Hilbert, Noether)

Let L/K be a finite Galois extension with Galois group G. Then H(G, L*) = 0.

Proof. Let f: G — L* be a crossed homomorphism. In multiplicative notation, this
means that for any o, 7 € G, we have f(o7) = f(o)o(f(7)) or equivalently

[o(£(1) = (@) (o)}
and we have to find such that f(o) = o(m)/mforall o € G.
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Hilbert’s Theorem 90

Theorem (Kummer, Hilbert, Noether)

Let L/K be a finite Galois extension with Galois group G. Then H(G,L*) = 0.

Proof. Let f: G — L* be a crossed homomorphism. In multiplicative notation, this
means that for any o, 7 € G, we have f(o7) = f(o)o(f(7)) or equivalently

o(£(r) = (o)~ f(o7) |

and we have to find such that f(o) = o(m)/mforall o € G.

Lemma (Dedekind)

Let L/K be a finite Galois extension. Then distinct elements of Gal(L/K) are linear inde-
pendent over L.
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As f(r) € L* is nonzero, the above lemma implies that

ZTegf(T)-T:L—)L

is not a zero map, i.e., there exists an o € L such that

Bi=) f@)-T(@)#0.

But then, for o € G, we have

o(B) =3 _ olf()-o7(a)
=3 f0) " f(o7) - o7(a)

=)t )  Flor) or(e) = fo)'B

as 7 runs over G, so also does o7. Thus, we have f(c) = 3/0(B8) = a(p~1) /371

O
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Infinite Galois theory

Let L/K be a Galois extension with infinite Galois group G and M a G-module. The group
G has natural profinite topology, i.e., basic open sets of GG are those subgroups H < G
which have finite index in G. We then define the cohomology groups of G with coefficients
in A as

H'(G, M) :=lim H'(G/H, M),

where H runs through all open subgroups of G. (Use the inflation maps!)
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Infinite Galois theory

Let L/K be a Galois extension with infinite Galois group G and M a G-module. The group
G has natural profinite topology, i.e., basic open sets of G are those subgroups H < G
which have finite index in G. We then define the cohomology groups of G with coefficients
in A as

H'(G, M) :=lim H'(G/H, M),

where H runs through all open subgroups of G. (Use the inflation maps!)

Let L/K be an infinite Galois extension with Galois group G. Then H!(G, L*) = 0.

Proof.
Exercise! |
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Classification of quadratic / cubic extensions

Can we classify all the quadratic extensions of Q?
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Classification of quadratic / cubic extensions

Question

Can we classify all the quadratic extensions of Q?

Can we classify all the cubic extensions of Q?
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Kummer theory

Suppose that K is a number field containing a primitive n-th root of unity ¢, or
equivalently u,, C K for a given integer n > 2. Then we can easily classify abelian
extensions of exponent n in terms of some data related to K= (cf. CFT).

More precisely, for any a € K*, the field L = K({/a) is the splitting field of f(z) = 2" — a
over K; the notation {/a denotes a particular primitive n-th root of a, but it does not matter
which root we pick because 1, C K (and so all the n-th roots of a are of the form ¢* /a).
Note that L is a Galois extension of K, and Gal(L/K) is cyclic as we have an injective
homomorphism:

Gal(L/K) — pn ~Z/nZ

> 2(Ya)

This homomorphism is an isomorphism if and only if ™ — « is irreducible.
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Let L/K be a cyclic field extension of degree n with Galois group (o) and suppose that L
contains a primitive n-th root of unity ¢,,. Then o(a) = ¢« for some « € L.

Proof.

The automorphism ¢ is a linear transformation of L with characteristic polynomial z™ — 1;
by the above lemma by Dedekind it must be its minimal polynomial, since

{1,0,02,...,0" '} is linearly independent. Thus, ¢, is an eigenvalue of o. O
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Classification of cyclic extensions

Theorem (classification)

Let K be a number field containing a primitive n-th root of unity ¢,,. If L/ K is a cyclic extension
of degree n, then L = K({/a) for some a € K*.

Proof.
By the above lemma, there is an element a € L for which o(a) = ¢, a. We have

o(@") =o(a)" = ()" = a”,

thus a = o™ is invariant under the action of (o) = Gal(L/K) and thus lies in K. Moreover,
the orbit {a, Ca, ..., (" ta} of a under the action of Gal(L/K) has order n, so
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Kummer pairing

Let K be a number field and assume that ¢,, € K. The Kummer pairing is the map

(= =) Gal(K/K) x K* — ((a) = in

(o,a) =

which is well-defined. Indeed, if « and j are two n-th roots of a, then (o/8)" = 1 and so
a/B € {¢,) C K is fixed by o. Thus,

a(B)/B=a(B)/B-a(a/B)/(a/B) = o(a)/a

and the value of (o, a) does not depend on the choice of {/a.
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First Proof of Theorem A

From the Kummer pairing, we have a natural map sending a € K* to (o +— (0, a)):

®: K* — Hom(Gk, pn)

It suffices to show that ker(®) = (K*)™ and ® is surjective.

1) For each a € K* ~ (K*)", if we pick an n-th root o € K, then the extension K(«)/K is
non-trivial and some o € G must act nontrivially on «. For this o, we have (o, a) # 1 and
S0 a ¢ ker(®). Note that (K*)™ C ker(®) is obvious.

2) Surjectivity is an exercise. Use the classification theorem.
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Another proof of Theorem A

The multiplicative group K~ is a G'x-module and there is an exact sequence of

G r-modules:
=% ()" 5%

0 Lin K K 0.

Taking a long exact sequence of cohomology yields:

0 —— pSx —— (K6 5 (®B¥)ox —— HY Gk, ) — HY(Gx, K"

)
(e)

© H(d)

(a) H(b)
Kx =

i, KX Hom(Gk, p) —— 0
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Another proof of Theorem A

The multiplicative group K~ is a G'x-module and there is an exact sequence of
G r-modules:
x  (=)"

X

K 0.

0 Lon, K
Taking a long exact sequence of cohomology yields:

0 —— pSx —— (K6 5 (®B¥)ox —— HY Gk, ) — HY(Gx, K"

)

© H(d)

(a) (e)

|
fin o 2 K* Hom(Gx, pt,) ——— 0

Why? (a), (d): Note that we assume that u,, C K, and so Gk acts trivially on p,,.
(b), (¢): Galois theory. (e): Hilbert’'s theorem 90. O
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Elliptic curves

Note that the group scheme G,,, is used in the previous discussion. A bit more specifically,

X

G,(L)=L" and G,(K)=K .
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Elliptic curves

Note that the group scheme G,,, is used in the previous discussion. A bit more specifically,

X

G,(L)=L" and G,(K)=K .

Other type of group schemes can be used in a similar manner: Let E be an elliptic curve
over a number field K. As above, there is an exact sequence of G x-modules:

0 En] E(K) = E(K) — 0.

Here, E[n] := {P € E(K) : nP = 0} is the group of n-torsion points.
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Taking a long exact sequence of cohomology gives rise to:
0 —— E[n) ———— B(K)S« — 5 E(K)°< = E(K)

— HY(Gk,En)) — HY(Ggk,E(K)) — H'(Gg,E(K)).
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Taking a long exact sequence of cohomology gives rise to:
0 —— E[n) ———— B(K)S« — 5 E(K)°< = E(K)
—— H'(Gk,E[n) — H'(Gk,E(K)) -~ H'(Gk, E(K)).
Thus, we obtain a short exact sequence:

0 — E(K)/nE(K) — |H'(Gk, E[n]) | —— H'(Gk,E(K))[n] — 0.

If H' (G, E[n]) were finite, we would be very happy. But unfortunately, it is NOT...
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Local picture

For a prime v, we fix an extension of v to K. We then have a commutative diagram:

-

S

N —

[

and so a decomposition group G, = Gal(K,/K,) C Gk. Now G, acts on E(K,) and
similarly as above we get:

0 —— E(K,)/nE(K,) — H'(Gy, E[n]) —— H' (G, E(K,))[n] — 0.
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Via the maps E(K) — E(K,) and G, C Gk, we get commutative short exact sequences:

0 —— E(K)/nE(K) —— HY(Gg,E[n]) — HY(Gx, E(K))[n] — 0,

S0 res I res
\} S~

S

0 — E(K,)/nE(K,) — |HY(G,, E[n]) | — HY(G,,E(K,))[n] — 0.

If E has good reduction at v and v { n, then the action of G, on E[n] is unramified

(Néron—Ogg-Shafarevich criterion) so it factors through the quotient G,,/1, ~ (Frob,) ~ Z.

Furthermore, if E[n] = E(K,)[n], then
HY(G., E[n]) = Hom(Z, (Z/nZ)?) ~ (Z/nZ)?

is obviously finite. If f,, were injective, we would be very happy. But it is NOT...
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Selmer groups (and TS)

0 —— E(K)/nE(K) —~— H'(Gg,E[n])) —— H'(Gk,E(K))[n] — 0,

\\\\\\f'u J/ \\‘\\\ 9v J{
\\\\} S

T

0 — E(K,)/nE(K,) —— |HY(G,4, E[n]) | — H'Y(G,,E(K,))[n] —— 0.

However, since the diagram is commutative any element in the image of » maps to 0 by g,.
This motivates the following definition...
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Selmer groups (and TS)

The n-Selmer group of E/K is the group

Sel"™ (E/K) := ker (HI(GK, Efn]) - [[H'(G., E(Kv»)

all v

and the Tate—Shafarevich group of E/K is the group

III(E/K) := ker (Hl(GK, E(E)) - [[H" (G, E(KU))> :

all v
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Proof of Theorem B

From the discussion above, we obtain a short exact sequence:

0 —— E(K)/nE(K) — |Sel™(E/K)| —— TI(E/K)[n] — 0.

The group Sel(")(E/K) is finite. Hence E(K)/nE(K) and III(E/K)[n] are also finite.

\.

The group ITI(E/K) is finite.
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Sketch of the proof

First, we may consider the finite extension L = K (E[n]) of K. Then it is not hard to prove
that E(K)/nE(K) is finite if E(L)/nE(L) is finite.

Then we construct the same exact sequences for L instead of K. Note that

HY(Gp, E[n]) = Hom(Gp, E[n]) as G, acts trivally on E[n]. It turns out that an element of
Sel™ (E/L) (as a subgroup of Hom(G,, E[n])) is a special map from G, to En].
Furthermore, such a map corresponds to a finite extension of exponent n of L unramified
outside a finite set S.

Finally, the number of such “unramified” extensions is finite.
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Sketch of the proof

First, we may consider the finite extension L = K (E[n]) of K. Then it is not hard to prove
that E(K)/nE(K) is finite if E(L)/nE(L) is finite.

Then we construct the same exact sequences for L instead of K. Note that

HY(Gp, E[n]) = Hom(Gp, E[n]) as G, acts trivally on E[n]. It turns out that an element of
Sel™ (E/L) (as a subgroup of Hom(G,, E[n])) is a special map from G, to En].
Furthermore, such a map corresponds to a finite extension of exponent n of L unramified
outside a finite set S.

Finally, the number of such “unramified” extensions is finite.

We can directly prove that Sel(")(E/K) is finite by a similar argument.
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Thank you very much
for your attention!



