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Why (not) Euler systems?

Most lectures would begin with
Why (blah)? (e.g. Why Euler systems?)

Let me go with the opposite direction.
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Why (not) Euler systems?

Most lectures would begin with
Why (blah)? (e.g. Why Euler systems?)

Let me go with the opposite direction.

Why you did not have to know Euler systems (still yet)?

Probably, some of you might hear the notion of Euler systems many times in various lectures,
but did it work? Maybe not (e.g. me until 2013). Let me tell you why.
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Why (not) Euler systems?

Most lectures would begin with
Why (blah)? (e.g. Why Euler systems?)
Let me go with the opposite direction.

Why you did not have to know Euler systems (still yet)?

Probably, some of you might hear the notion of Euler systems many times in various lectures,
but did it work? Maybe not (e.g. me until 2013). Let me tell you why.

Although Euler systems are regarded as an important tool “in number theory”, the method
of Euler systems itself is a very specific and single-minded technique
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Why (not) Euler systems?

Most lectures would begin with
Why (blah)? (e.g. Why Euler systems?)

Let me go with the opposite direction.
Why you did not have to know Euler systems (still yet)?

Probably, some of you might hear the notion of Euler systems many times in various lectures,
but did it work? Maybe not (e.g. me until 2013). Let me tell you why.

Although Euler systems are regarded as an important tool “in number theory”, the method
of Euler systems itself is a very specific and single-minded technique (to bound certain
“arithmetically interesting” modules) in the framework of special values of L-functions.
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The simplest application of Kato’s Euler systems 0

We first illustrate a simple application of (the bottom of) Beilinson—Kato elements to the
arithmetic of elliptic curves. Let’s fix the convention:

> p, a prime.

> FE, an elliptic curve over Q (without complex multiplication).

> T =Tapk =lim E(Q)[p*], the p-adic Tate module of E.

> V=VWE=T ®z, Qp, the 2-dimensional QQp-vector space endowed with the continuous
action of Ggp = Gal(Q/Q).

> p:Gg — Autg, (V) =~ GL2(Qp), the corresponding Galois representation.

Let ¥ be a finite set of places of Q containing p, oo, and bad reduction primes for E, and
denote by Qx the maximal extension of Q unramified outside ¥. Then the information of
E(Q) can be detected in Galois cohomology group H}(Q, V) = H(Qx/Q, V) via Kummer
map

E(Q) ®Qp, - H'(Q,V)

which makes the connection between geometry and cohomology.
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The simplest application of Kato’s Euler systems 1

Exercise

> Why H(Q, V) = H}(Qx/Q, V)? In other words, why does the action of Gg on V factor
through Gal(Qx/Q)?

» Can you write down the Kummer map explicitly?
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The simplest application of Kato’s Euler systems 2

The same rule applies to the local case. We first investigate the local nature of Galois
cohomology at p. The local Kummer map E(Qp) ® Qp — H(Qp, V) embeds a 1-dimensional
geometric object into a 2-dimensional cohomological one (why?). The Weil pairing

VXV —=Qp1)
induces a non-degenerate cup product pairing (the local Tate pairing)
(= =)p - H'(Qp, V) X H (Qp, V) = HA(Qp, Qp(1)) = Qp-
Under this pairing, we have the following orthogonality
E(Qp) ®Qp L E(Qp) ®Qp
due to local Tate duality.

The base field Qp can be replaced by other local fields Q, (with £ # p) and R. The formalism
applies in the same way, but the actual computation will be different.
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The simplest application of Kato’s Euler systems 3

Exercise
» Check the statement of the local Tate duality.

» Compute the Fp-dimension of H*(Qp, E[p]) (Hint: Use the local Euler characteristic
formula.) Can you do the same thing for H!(Qp, V)?

> Compute the Qp-dimension of H!(Qp, V') (Hint: Use the local Euler characteristic
formula again.)

» Did you recognize that V' is self-dual, i.e. V >~ Hom(V,Q, (1)), thanks to the Weil
pairing?
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The simplest application of Kato’s Euler systems 4
We expand the picture of the cup product pairing:

HY(Qp, V) X HY(Qp, V) —— Q@
E(Qp) ® Qp epoE

':N%XPE

Qp X Qp ——— = Qp

e
HO(E/Qp, 21).

and explain the precise meaning of each term:

>

The map expg : Qp — E(Qp) ® Qp extends the formal exponential map

expg : pLp — E(pr). Denote by w}, the basis of the tangent space Qpuwy; of E/Q, at
the identity characterized by the natural pairing (wg,w},) = 1. If we identify the source
Qp with Qpw¥, by sending 1 to wj,, then the exponential map coincides with the Lie
group exponential map.

The latter Qp in the diagram is isomorphic to the space of global 1-forms

H°(E/Qp, Q') = Qpwg, i.e. the cotangent space and of E/Q, at the identity, by sending
1 to wg.

The above dual exponential map cxngE : HI(QP, V) — Qp is the composition of
Bloch-Kato’s dual exponential map exp* : H!(Qp, V) — H°(E/Q,, Q') and the above
isomorphism H%(E/Qp, Q') ~ Qp.

The bottom pairing of the diagram is given by multiplication: (a,b) — a - b.
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The simplest application of Kato’s Euler systems 5

The characterization of the kernel of the dual exponential map is important.

ker(exp, ) = E(Qp) ® Qp C H'(Qp, V).

We now see the simplest form of Kato’s work and feel its power for the first time.

Theorem (Kato)
There exists a global Galois cohomology class zg € HI(Q, V) such that

exp™

locy
HY(Q,V) ——=H'(Qp, V) ——— Qpup

2 | exp* (locp (2g))

and
L(ZD)(E7 1)

CWE
F
SIE

exp* (locp(z0)) =

where L(p)(E, 1) 4s the L-value of E at s = 1 removing the Euler factor at p.
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The simplest application of Kato’s Euler systems 6

Corollary (Kato)
If rkz E(Q) > 0, then L(E,1) = 0.

Proof.
Let P € E(Q) be a point of infinite order. Under the natural map

E(Q) — E(Qp) = E(Qp)R®2Zp — E(Qp) ® Qp,

the image of P generates E(Qp) ® Qp. Since both zg € H'(Q,V) and P are global, the global
reciprocity law implies that

Z (loce(2q), P)e = 0.

£<o0o

Since HY(Qg, V') = 0 for every place £ # p (including the infinite place), we have

(loce(zg), ), = 0. By the self-orthogonality of F(Qp) ® Qp, we have locp(2g) € E(Qp) ® Qp.
By (1), exp* olocy(2g) = 0. Thus, L(E, 1) = 0 by Kato’s theorem. O
This is the very starting point of Kato’s Euler systems, and the cohomology class zq is just a
part of a much deeper object.
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The simplest application of Kato’s Euler systems 7

Exercise
Check the statement of this form of the global reciprocity law (in class field theory).
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L-functions and Galois cohomology: the set up

Recall the convention (with slight generalizations)
> p> 2 a prime
F/Qp, finite extension (the coefficient field)
O = Op with uniformizer w
T, a free O-module of finite rank n with the continuous action of Gg
V=T®oF
W = V/T, the discrete Galois module, which is co-free over O.
For m > 1, write Wy, = W[w™], Ty, = T/w™T.
> V*(1) = Hom(V, F(1)), W*(1) = Hom(T, F/O(1)).

Assume V is geometric (in the sense of Fontaine-Mazur), i.e.

vVvyvVvyVvYyYyy

» V is unramified outside a finite set of primes X.

» V is de Rham at p in the sense of Fontaine’s theory of p-adic periods.

Exercise (a big one)
Study p-adic Hodge theory (for future).
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L-functions and Galois cohomology: L-functions

For £ ¢ ¥, let
Py(V,z) = det(In — @ - p(Froby)|v)

where Frob, is the arithmetic Frobenius at £. Set

L2(V,s) =[] P(V,e)~*
g

which converges for Re(s) > 0 (depending on the behavior of Frobenius eigenvalues).
For elliptic curves, we have P(V,£75) = 1 — apl™° + €1 725 where ay = £+ 1 — #E(F,). It is

known that the Hasse bound |ag| < 2v/¢ gives the convergence abscissa Re(s) > 5
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L-functions and Galois cohomology: Selmer structures

We recall the notion of Selmer structures/local conditions.

» For every prime £ except p and oo, define
H}(Qe, V) = ker (H'(Qq, V) = H'(I, V)

where I, C Gal(Q,/Qy) is the inertia subgroup at £.
» For £ = co, we have H}(R, V) =0 since p > 2.
» For ¢ = p, we consider two different structures:
> H} (Qp, V) = 0 for the p-strict Selmer groups.
> H} (Qp, V) = ker (H1 (Qp, V) = H(Qp, V ® Beris)) for the Bloch-Kato Selmer groups.
In any case, H}(Qg, T) and H}(Qg, W) are defined as the preimage and the image of
!

H}(Q[, V) with respect to T — V — W, respectively. Write H}f =
f

Exercise

Check H} (Q¢, V) = H (F,, V1t), i.e. be comfortable with the inflation-restriction sequence
argument. (a part of “Hochschild—Serre spectral sequence” in group cohomology)
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L-functions and Galois cohomology: Selmer groups

Let X/ be a finite set of primes and M be a Galois module. Then the ¥/-relaxed Selmer

group of M is defined by

Sel™ (@, M) = ker [ HY(@Q, M) — [] H},(Q¢, M)
0gs

=ker | H'(Qsus/Q,M) = [  H};(Qe M)
(Z(SUSH\E
and the X'-strict Selmer group of M is defined by

Sels (Q, M) = ker [ Sel™ (@, M) — [] H'(Qe¢, M)
e’

Exercise
See Milne’s Arithmetic duality theorems for checking the notion of Selmer groups is
independent of ¥ (not 3’ above!).
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L-functions and Galois cohomology

The weak form of the Bloch—Kato conjecture can be stated as follows:

Conjecture (Bloch-Kato)

ords—oL(V, s) = dimpSel(Q, V*(1)) — dimpH%(Q, V*(1)).

In fact, Kato proved the following stronger theorem.

Theorem (Kato)

Let E be an elliptic curve without complex multiplication. Let p > 2 be a prime such that T
has large image. If L(E,1) # 0, then Sel(Q, E[p®°]) is finite, so Sel(Q,V) = 0.
We need more than zg for this statement.
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Definition of Euler systems

Let Q2P be the maximal abelian extension of Q.

Definition
An Euler system for T is a collection of cohomology classes

z= {ZK eHl(K,T):QgKgQab}

where K runs over finite extensions of Q in Q2P such that

( )= 2Q(¢n) iffjnorl e
COTESQ(Cne) /Q(¢n) \PQCne) ) = P[(V*(l),F‘robzl) “2g(c,) otherwise.

This system remembers most Euler factors of the L-function (of the dual side). This is why
we call it an Euler system.

As a rough picture, zg((,) is related to L(V ® Q(¢n), 0) and coresgc,,)/0 (ZQ(C")) is related
to L¥(V,0) where 3, = S U {{|n}.
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The “main theorem” of Euler systems

Theorem (Rubin)
Let z be an Euler system for T. Suppose that T has large image:

> T/wT is irreducible, and

> there exists T € Gal(Q/Q((poo)) such that T/(t — 1)T is free of rank one over O.
If zg is not a torsion in HY(Q,T), then Sel;3(Q, W*(1)) is finite.

We try to explain how the Euler system works intuitively. We actually bound
Self,y (Q, Wy, (1)) independently of m. The main tools are (of course) local and global
dualities in Galois cohomology.
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Local and global dualities

Let
(= =)e : H{(Qq, Win) x H'(Qg, Wyi, (1)) = O/m™O

be the local Tate pairing. Then the local duality says H} (Qe, W)+ = H} (Qe, W} (1)). Fix a
finite set of primes ¥/ not including p. Consider the diagram

s
locg,,

sel{P} (@, Win) s 501™ V P} (@, Win) —— @Byesy HY (@, Win)

X

loc)f:, (2)
Selgyr (py (@ Wi ()= Selyy (@ W), (1) —— @y v HE (@, W) (1)
Zeesr (=Y
O/m™O

where

locs,, = @ locg : Selz/u{p}(Q, Win) — @ HY(Qp, Win) — @ H}f(Qg,Wm),

Les’ Lexs’ Lex’
locé, = @ locg s Selypy QW (1) — @ H}(QZ,W;;L(I)).
Lex’ Lex’
The global duality implies
im(locsz,)J‘ = im(locg,).
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The key intuition of the Euler system argument

One of the key intuitions of the Euler system argument is the following behavior:
If im(loc§,, ) gets larger, then im(locé,) gets smaller.

Therefore, it suffices to construct “relevant” 3’ and elements kyy € Selzlu{f"}((@7 W) from z
such that

» ks is ramified at primes in X/, so its image under loc$,, is non-trivial, and

> length(coker(locs, )) and length(Sels/p} (Q, W3, (1)) are bounded independently of m.
Here, kyy/’s are called Kolyvagin derivative classes.
Remark
Also, “relevant” ¥/ means that the image of the arithmetic Frobenius Frob, at £ € ¥/ is

equivalent to the image of 7 € Gal(Q(Wn)({pm)/Q). Chebotarev density theorem plays the
key role to construct such a X/.

The finiteness of the p-strict Selmer group Sely,} (Q, W*(1)) can be proved in this way.
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Application of the explicit reciprocity law

From now on, we consider the case of elliptic curves only.

How to obtain the finiteness of Sel(Q, W*(1)) from the finiteness of Sely,, (Q, W*(1))? We
now compare the difference between Sely,,1 (Q, W*(1)) and Sel(Q, W*(1)). We consider the
following variant of (2) with the Bloch-Kato local condition at p. In other words, we have

Sel(Q, T)—— SelP}(Q,T) e H) (Qp, T)

X
loct
Sel (3 (Q, W* (1) Sel(Q, W*(1)) —> H}(Qp, W*(1))
<_’_>pv
F/O

with im(locZ)L = im(loc;;). Note that H}(QP,T)J- = H}(Qp, W*(1)).

A% (JBNU) Introduction to Euler systems SNU Algebra Camp 2025 20 /31



The finiteness of Selmer groups

Therefore, the proof of the finiteness of Sel(Q, W*(1)) reduces to showing that the rational

restriction map
locs : SellP}(Q, V) — HJ ;(Qp, V)

is surjective. Since we have

loc? xp™
SelP}(Q, V) —= H} (Qp, V) ——— == Fil’(Deyia(V))
L®)(E,1
20 | exp* olocy(2q) = # ‘wg # 0,
E

locy, is surjective. The finiteness of Selmer groups follows.
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From Euler systems to Kolyvagin systems

We move to Kolyvagin systems.
First, why Kolyvagin systems? There are at least two advantages.

1. The sharp bound via the primitivity, which gives a mod p criterion for verifying the
exact Bloch—Kato type formula and the Iwasawa main conjecture.
2. The structure theorem, not only the size.

We focus on the second advantage. By utilizing the Kolyvagin system argument, the
following statement
If z = {zK } Kk is an Euler system and zq is not a torsion, then Selg,1(Q, W*(1)) is
finite.

can be refined as follows:
Let k = {kn}n be the Kolyvagin system attached to the above Euler system z. If k is
non-trivial, then the structure of Selg,1(Q, W*(1)) is described in terms of all kn’s.
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Kolyvagin derivatives
We restrict ourselves to the case of elliptic curves again. Let z = {zx } ;- be Kato’s Euler
system. Then zx € H!(K,T) is characterized by
LSP) (B v, 1
Z (exp* olocy2%) - x(0) = LPPUE x 1) ‘wEg
QX(*l)
seGal(K/Q) E

where x is an even character of Gal(K/Q), and S is the product of the ramified primes of
K/Q.
For an integer m > 1, denote by Py, the set of primes £ such that (¢, Np) =1,a, =0+ 1
(mod p™) and £ =1 (mod p™). For each £ € Ppy,, fix a primitive root 7y mod ¢ and write
Gal(Qe)/Q) <= (2/¢2)*
Ong < e

the Kolyvagin derivative operator Dy at ¢ € Py, is defined by
D, = ZZ ‘ wa

Let Ny, be the set of square-free products of primes in P,, and n € N,,. Then we define
Dy = [Ty De-

Exercise
(on, = 1) D¢ = (£ —1) = Nmg(¢,) /0
in Z[Gal(Q(¢e)/Q)]-
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Refining Selmer structures

What should we do for the refinement? We need to be more careful about the Selmer
structure. We need slightly more than ramified classes.
Let zg(¢,) be an Euler system class. Applying the Kolyvagin derivative
Dy, € Z[Gal(Q(¢n)/Q)] to 2, ), We have a priori

Ky = Do(¢n)2KQ(¢n)  (mod @™) € Selt?tlnh(@Q, W,y,).
Indeed, we can organize nb( ) with more controlled local conditions at primes dividing n.
Let £ be a prime with £ =1 (mod w™). Then the transverse local condition at £ is defined by

HE (Qe, Win) = ker (HY(Qg, Win) — H Qe (), Win))

and it can be viewed as the complement of H}, at £. There exists the finite-singular

comparison isomorphism
oF  Hp(Qe, Win) = Hj 1(Qe, Wim) = Hy (Qe, Win)
obtained from the Euler factor at £. We would like to construct
Kn € SeltP} (@, W),

i.e. locy(kn) € HL.(Qg, Wi,) for every £ dividing n. In Kato’s case, kn = KJ,.
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Why the transverse local condition?

The axiom for Kolyvagin systems is the following local relation

locy(kne) = «pﬁs (locg(kn))-

Proposition
1. H} (Q¢, W) and H} (Qg, W} (1)) are orthogonal to each other with respect to {(—, —)y.
2. HL (Q¢, W) and H} (Qg, W}, (1)) are orthogonal to each other with respect to (—, —),.
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The Euler-to-Kolyvagin map

Write Gy, = Gal(Q(¢r)/Q) for convenience. Let ES(Q(¢r), T) € HY(Q(¢n), T) be the
Zp|Gal(Q(¢n)/Q)]-submodule generated by cohomology classes in H'(Q(¢n), T') which are
parts of Euler systems for 7. Then we have the commutative diagram

ES(Q(Ca), T) —> Dy (BS(Q(Ca), T)) 25 (HY(Q(n), ) /p™) "

HY(Q(¢n), T/p™T)

Nlres_l

HY(Q,T/p™T)

and the Euler system class z maps to the Kolyvagin system class x,, following the above
Y Q(¢n) Map:
diagram
ZQ(Cn) — DnZQ(Cn) — D”ZQ(Cn) (mod pm) = Kn.

Here, the restriction map is an isomorphism since we assume the large Galois image
assumption. (Why is Dn2g(c,) (mod p™) Galois invariant?)
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Kolyvagin system argument

We now explain how the Kolyvagin system argument works. We now fix one integer m > 1

while every positive integer m was considered together before. Let k(M) = (nﬁ{"ﬁneNm be

the mod p™ reduction of Kato’s Kolyvagin system , and

)‘(na E[me = lengchp (Sel{p},n—tr((@z E[pm])) s
8 (k™) = min {m — lengthy, (Z/me . m(lm)> :n € N, v(n) = r} .

Theorem (Mazur—Rubin)

Suppose that (™M) is non-trivial. Then there exists an integer j > 0 such that

2/p" % w = pAERTD  sell?) (@, Elp™))

n-tr

for every n € No,.

It is also known that there is a non-canonical isomorphism

Sell?} (Q, E[p™)) ~ Z/p™Z & Sel (y p-1x (Q, E[p™])

for every n € No,.
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The structure theorem

Theorem (Mazur-Rubin)

Suppose that (™) is non-trivial. Write

Sel(,}(Q, E[p™)) ~ @ z/p% L

i>1

with dy > dg > ---. Then for every r > 0, we have

8" (k™)) = min {m,j + Zdz} .

i>r
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The proof 1

What we know is:
8 (k™) = min {m, j + A(n, E[p™]) : v(n) = r}.

Therefore, the r = 0 case follows from

AL EP™) = di.

i>0
Suppose n € N, and v(n) = r > 0. Consider the map

EPloce : Sel(,y(Q, Elp™]) — @D E(Qe) ® Z/p™Z ~ (2./p"2)®" ™.
£|n £in

The RHS is free of rank r over Z/p™Z. Thus, the image is a quotient of Sel;,1(Q, E[p™])

generated by at most r elements. Thus, the length of the image is at most ), ., d;, and the

length of the kernel is at least ), . d;. Also, the kernel of this map is contained in
Sel{p},n—tr(@7 E[pm])

Therefore, A(n, E[p™]) > > ;< di, s0

) (k™)) > min {m,j + Zdz} .

i>r
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The proof 2

It suffices to prove the opposite inequality. We use induction on r. The r = 0 case is already
done. Using Chebotarev density theorem, we can (carefully) choose a prime ¢ € Py, such that

> Sel{p,é},n—tr (Q7 E[pm]) =~ @i>7‘+1 Z/pdiZ’ and

> Sel{p,é},n—tr(@v E[pm]) = Sel{p},n@»tr (Qv E[pm])
We are done. It is remarkable that each choice of ¢ kills one generator of the p-strict Selmer
group.
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Exercise

Exercise
Fix a positive integer m and Let S be the set of square-free products of primes ¢ such that
£ =+1 (mod m), i.e. the Frobenius at £ is trivial in Gal(Q((m)1/Q). For r € S, let

&= \Cm-[TC—1] (¢t TI¢e—1
Llr Llr

where ¢ is a [O-th primitive root of unity. For ¢ dividing r, we have

Froby,—1
NG ) /@) () = (Erpe) 7
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Exercise

Exercise
Fix a positive integer m and Let S be the set of square-free products of primes ¢ such that
£ =41 (mod m), i.e. the Frobenius at £ is trivial in Gal(Q({m)T/Q). For r € S, let

&= \Cm-[TC—1] (¢t TI¢e—1

Llr Llr
where ¢ is a [O-th primitive root of unity. For ¢ dividing r, we have

Froby,—1
NG ) /@) () = (Erpe) 7

This is the Euler system relation of cyclotomic units.
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