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Why (not) Euler systems?

Most lectures would begin with

Why (blah)? (e.g. Why Euler systems?)

Let me go with the opposite direction.

Why you did not have to know Euler systems (still yet)?

Probably, some of you might hear the notion of Euler systems many times in various lectures,
but did it work? Maybe not (e.g. me until 2013). Let me tell you why.
Although Euler systems are regarded as an important tool “in number theory”, the method
of Euler systems itself is a very specific and single-minded technique (to bound certain
“arithmetically interesting” modules) in the framework of special values of L-functions.
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The simplest application of Kato’s Euler systems 0

We first illustrate a simple application of (the bottom of) Beilinson–Kato elements to the
arithmetic of elliptic curves. Let’s fix the convention:

▶ p, a prime.

▶ E, an elliptic curve over Q (without complex multiplication).

▶ T = TapE = lim←−n
E(Q)[pk], the p-adic Tate module of E.

▶ V = VpE = T ⊗Zp Qp, the 2-dimensional Qp-vector space endowed with the continuous

action of GQ = Gal(Q/Q).

▶ ρ : GQ → AutQp (V ) ≃ GL2(Qp), the corresponding Galois representation.

Let Σ be a finite set of places of Q containing p, ∞, and bad reduction primes for E, and
denote by QΣ the maximal extension of Q unramified outside Σ. Then the information of
E(Q) can be detected in Galois cohomology group H1(Q, V ) = H1(QΣ/Q, V ) via Kummer
map

E(Q)⊗ Qp → H1(Q, V )

which makes the connection between geometry and cohomology.
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The simplest application of Kato’s Euler systems 1

Exercise
▶ Why H1(Q, V ) = H1(QΣ/Q, V )? In other words, why does the action of GQ on V factor

through Gal(QΣ/Q)?

▶ Can you write down the Kummer map explicitly?

김찬호 (JBNU) Introduction to Euler systems SNU Algebra Camp 2025 4 / 37



The simplest application of Kato’s Euler systems 2

The same rule applies to the local case. We first investigate the local nature of Galois
cohomology at p. The local Kummer map E(Qp)⊗ Qp ↪→ H1(Qp, V ) embeds a 1-dimensional
geometric object into a 2-dimensional cohomological one (why?). The Weil pairing

V × V → Qp(1)

induces a non-degenerate cup product pairing (the local Tate pairing)

⟨−,−⟩p : H1(Qp, V )×H1(Qp, V )
∪→ H2(Qp,Qp(1)) ≃ Qp.

Under this pairing, we have the following orthogonality

E(Qp)⊗ Qp ⊥ E(Qp)⊗ Qp

due to local Tate duality.
The base field Qp can be replaced by other local fields Qℓ (with ℓ ̸= p) and R. The formalism
applies in the same way, but the actual computation will be different.
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The simplest application of Kato’s Euler systems 3

Exercise
▶ Check the statement of the local Tate duality.

▶ Compute the Fp-dimension of H1(Qp, E[p]) (Hint: Use the local Euler characteristic
formula.) Can you do the same thing for H1(Qp, V )?

▶ Compute the Qp-dimension of H1(Qℓ, V ) (Hint: Use the local Euler characteristic
formula again.)

▶ Did you recognize that V is self-dual, i.e. V ≃ Hom(V,Qp(1)), thanks to the Weil
pairing?

김찬호 (JBNU) Introduction to Euler systems SNU Algebra Camp 2025 6 / 37



The simplest application of Kato’s Euler systems 4
We expand the picture of the cup product pairing:

H1(Qp, V ) × H1(Qp, V )

exp∗
ωE

��

// Qp

E(Qp)⊗ Qp
?�
OO

Qp

≃ exp
Ê

OO

× Qp
// Qp

H0(E/Qp,Ω1).

≃
OO

and explain the precise meaning of each term:
▶ The map exp

Ê
: Qp → E(Qp)⊗ Qp extends the formal exponential map

exp
Ê

: pZp → Ê(pZp). Denote by ω∗
E the basis of the tangent space Qpω∗

E of E/Qp at
the identity characterized by the natural pairing ⟨ωE , ω∗

E⟩ = 1. If we identify the source
Qp with Qpω∗

E by sending 1 to ω∗
E , then the exponential map coincides with the Lie

group exponential map.
▶ The latter Qp in the diagram is isomorphic to the space of global 1-forms

H0(E/Qp,Ω1) = QpωE , i.e. the cotangent space and of E/Qp at the identity, by sending
1 to ωE .

▶ The above dual exponential map exp∗ωE
: H1(Qp, V )→ Qp is the composition of

Bloch–Kato’s dual exponential map exp∗ : H1(Qp, V )→ H0(E/Qp,Ω1) and the above
isomorphism H0(E/Qp,Ω1) ≃ Qp.

▶ The bottom pairing of the diagram is given by multiplication: (a, b) 7→ a · b.
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The simplest application of Kato’s Euler systems 5

The characterization of the kernel of the dual exponential map is important.

ker(exp∗ωE
) = E(Qp)⊗ Qp ⊆ H1(Qp, V ). (1)

We now see the simplest form of Kato’s work and feel its power for the first time.

Theorem (Kato)
There exists a global Galois cohomology class zQ ∈ H1(Q, V ) such that

H1(Q, V )
locp // H1(Qp, V )

exp∗
// QpωE

zQ
� // exp∗(locp(zQ))

and

exp∗(locp(zQ)) =
L(p)(E, 1)

Ω+
E

· ωE

where L(p)(E, 1) is the L-value of E at s = 1 removing the Euler factor at p.
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The simplest application of Kato’s Euler systems 6

Corollary (Kato)
If rkZE(Q) > 0, then L(E, 1) = 0.

Proof.
Let P ∈ E(Q) be a point of infinite order. Under the natural map

E(Q) ↪→ E(Qp)→ E(Qp)⊗̂ZZp → E(Qp)⊗ Qp,

the image of P generates E(Qp)⊗Qp. Since both zQ ∈ H1(Q, V ) and P are global, the global
reciprocity law implies that ∑

ℓ≤∞
⟨locℓ(zQ), P ⟩ℓ = 0.

Since H1(Qℓ, V ) = 0 for every place ℓ ̸= p (including the infinite place), we have
⟨locℓ(zQ), P ⟩p = 0. By the self-orthogonality of E(Qp)⊗Qp, we have locp(zQ) ∈ E(Qp)⊗Qp.

By (1), exp∗ ◦ locp(zQ) = 0. Thus, L(E, 1) = 0 by Kato’s theorem.

This is the very starting point of Kato’s Euler systems, and the cohomology class zQ is just a
part of a much deeper object.
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The simplest application of Kato’s Euler systems 7

Exercise
Check the statement of this form of the global reciprocity law (in class field theory).
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L-functions and Galois cohomology: the set up

Recall the convention (with slight generalizations)

▶ p > 2, a prime

▶ F/Qp, finite extension (the coefficient field)

▶ O = OF with uniformizer ϖ

▶ T , a free O-module of finite rank n with the continuous action of GQ
▶ V = T ⊗O F

▶ W = V/T , the discrete Galois module, which is co-free over O.
▶ For m ≥ 1, write Wm = W [ϖm], Tm = T/ϖmT .

▶ V ∗(1) = Hom(V, F (1)), W ∗(1) = Hom(T, F/O(1)).
Assume V is geometric (in the sense of Fontaine–Mazur), i.e.

▶ V is unramified outside a finite set of primes Σ.

▶ V is de Rham at p in the sense of Fontaine’s theory of p-adic periods.

Exercise (a big one)
Study p-adic Hodge theory (for future).
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L-functions and Galois cohomology: L-functions

For ℓ ̸∈ Σ, let
Pℓ(V, x) = det(In − x · ρ(Frobℓ)|V )

where Frobℓ is the arithmetic Frobenius at ℓ. Set

LΣ(V, s) =
∏
ℓ̸∈Σ

P (V, ℓ−s)−1

which converges for Re(s)≫ 0 (depending on the behavior of Frobenius eigenvalues).
For elliptic curves, we have P (V, ℓ−s) = 1− aℓℓ

−s + ℓ1−2s where aℓ = ℓ+ 1−#E(Fℓ). It is

known that the Hasse bound |aℓ| ≤ 2
√
ℓ gives the convergence abscissa Re(s) >

3

2
.
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L-functions and Galois cohomology: Selmer structures

We recall the notion of Selmer structures/local conditions.

▶ For every prime ℓ except p and ∞, define

H1
f (Qℓ, V ) = ker

(
H1(Qℓ, V )→ H1(Iℓ, V )

)
where Iℓ ⊆ Gal(Qℓ/Qℓ) is the inertia subgroup at ℓ.

▶ For ℓ =∞, we have H1
f (R, V ) = 0 since p > 2.

▶ For ℓ = p, we consider two different structures:
▶ H1

f (Qp, V ) = 0 for the p-strict Selmer groups.
▶ H1

f (Qp, V ) = ker
(
H1(Qp, V ) → H1(Qp, V ⊗ Bcris)

)
for the Bloch–Kato Selmer groups.

In any case, H1
f (Qℓ, T ) and H1

f (Qℓ,W ) are defined as the preimage and the image of

H1
f (Qℓ, V ) with respect to T → V →W , respectively. Write H1

/f
=

H1

H1
f

.

Exercise
Check H1

f (Qℓ, V ) = H1(Fℓ, V
Iℓ ), i.e. be comfortable with the inflation-restriction sequence

argument. (a part of “Hochschild–Serre spectral sequence” in group cohomology)
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L-functions and Galois cohomology: Selmer groups

Let Σ′ be a finite set of primes and M be a Galois module. Then the Σ′-relaxed Selmer
group of M is defined by

SelΣ
′
(Q,M) = ker

H1(Q,M)→
∏
ℓ̸∈Σ′

H1
/f (Qℓ,M)


= ker

H1(QΣ∪Σ′/Q,M)→
∏

ℓ̸∈(Σ∪Σ′)\Σ
H1

/f (Qℓ,M)


and the Σ′-strict Selmer group of M is defined by

SelΣ′ (Q,M) = ker

SelΣ
′
(Q,M)→

∏
ℓ∈Σ′

H1(Qℓ,M)

 .

Exercise
See Milne’s Arithmetic duality theorems for checking the notion of Selmer groups is
independent of Σ (not Σ′ above!).
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L-functions and Galois cohomology

The weak form of the Bloch–Kato conjecture can be stated as follows:

Conjecture (Bloch–Kato)

ords=0L(V, s) = dimF Sel(Q, V ∗(1))− dimFH0(Q, V ∗(1)).

In fact, Kato proved the following stronger theorem.

Theorem (Kato)
Let E be an elliptic curve without complex multiplication. Let p > 2 be a prime such that T
has large image. If L(E, 1) ̸= 0, then Sel(Q, E[p∞]) is finite, so Sel(Q, V ) = 0.

We need more than zQ for this statement.
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Definition of Euler systems

Let Qab be the maximal abelian extension of Q.

Definition
An Euler system for T is a collection of cohomology classes

z =
{
zK ∈ H1(K,T ) : Q ⊆ K ⊆ Qab

}
where K runs over finite extensions of Q in Qab such that

coresQ(ζnℓ)/Q(ζn)(zQ(ζnℓ)
) =

{
zQ(ζn) if ℓ|n or ℓ ∈ Σ

Pℓ(V
∗(1),Frob−1

ℓ ) · zQ(ζn) otherwise.

This system remembers most Euler factors of the L-function (of the dual side). This is why
we call it an Euler system.
As a rough picture, zQ(ζn) is related to L(V ⊗ Q(ζn), 0) and coresQ(ζn)/Q

(
zQ(ζn)

)
is related

to LΣn (V, 0) where Σn = Σ ∪ {ℓ|n}.
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The “main theorem” of Euler systems

Theorem (Rubin)
Let z be an Euler system for T . Suppose that T has large image:

▶ T/ϖT is irreducible, and

▶ there exists τ ∈ Gal(Q/Q(ζp∞ )) such that T/(τ − 1)T is free of rank one over O.
If zQ is not a torsion in H1(Q, T ), then Sel{p}(Q,W ∗(1)) is finite.

We try to explain how the Euler system works intuitively. We actually bound
Sel{p}(Q,W ∗

m(1)) independently of m. The main tools are (of course) local and global
dualities in Galois cohomology.
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Local and global dualities
Let

⟨−,−⟩ℓ : H1(Qℓ,Wm)×H1(Qℓ,W
∗
m(1))→ O/ϖmO

be the local Tate pairing. Then the local duality says H1
f (Qℓ,Wm)⊥ = H1

f (Qℓ,W
∗
m(1)). Fix a

finite set of primes Σ′ not including p. Consider the diagram

Sel{p}(Q,Wm)
� � // SelΣ

′∪{p}(Q,Wm)

locs
Σ′ // ⊕

ℓ∈Σ′ H1
/f

(Qℓ,Wm)

×

Sel
Σ′∪{p}(Q,W∗

m(1))
� � // Sel{p}(Q,W∗

m(1))

loc
f
Σ′ // ⊕

ℓ∈Σ′ H1
f (Qℓ,W

∗
m(1))∑

ℓ∈Σ′ ⟨−,−⟩ℓ ��
O/ϖmO

(2)

where

locsΣ′ =
⊕
ℓ∈Σ′

locsℓ : SelΣ
′∪{p}(Q,Wm)→

⊕
ℓ∈Σ′

H1(Qℓ,Wm)→
⊕
ℓ∈Σ′

H1
/f (Qℓ,Wm),

locf
Σ′ =

⊕
ℓ∈Σ′

locfℓ : Sel{p}(Q,W ∗
m(1))→

⊕
ℓ∈Σ′

H1
f (Qℓ,W

∗
m(1)).

The global duality implies

im(locsΣ′ )
⊥ = im(locf

Σ′ ).
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The key intuition of the Euler system argument

One of the key intuitions of the Euler system argument is the following behavior:

If im(locsΣ′ ) gets larger, then im(locf
Σ′ ) gets smaller.

Therefore, it suffices to construct “relevant” Σ′ and elements κΣ′ ∈ SelΣ
′∪{p}(Q,Wm) from z

such that

▶ κΣ′ is ramified at primes in Σ′, so its image under locsΣ′ is non-trivial, and

▶ length(coker(locsΣ′ )) and length(SelΣ′∪{p}(Q,W ∗
m(1))) are bounded independently of m.

Here, κΣ′ ’s are called Kolyvagin derivative classes.

Remark
Also, “relevant” Σ′ means that the image of the arithmetic Frobenius Frobℓ at ℓ ∈ Σ′ is
equivalent to the image of τ ∈ Gal(Q(Wm)(ζpm )/Q). Chebotarev density theorem plays the
key role to construct such a Σ′.

The finiteness of the p-strict Selmer group Sel{p}(Q,W ∗(1)) can be proved in this way.
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Application of the explicit reciprocity law

From now on, we consider the case of elliptic curves only.
How to obtain the finiteness of Sel(Q,W ∗(1)) from the finiteness of Sel{p}(Q,W ∗(1))? We
now compare the difference between Sel{p}(Q,W ∗(1)) and Sel(Q,W ∗(1)). We consider the
following variant of (2) with the Bloch–Kato local condition at p. In other words, we have

Sel(Q, T )
� � // Sel{p}(Q, T )

locsp // H1
/f

(Qp, T )

×

Sel{p}(Q,W ∗(1))
� � // Sel(Q,W ∗(1))

locfp // H1
f (Qp,W ∗(1))

⟨−,−⟩p ��
F/O

with im(locsp)
⊥ = im(locfp). Note that H1

f (Qp, T )⊥ = H1
f (Qp,W ∗(1)).
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The finiteness of Selmer groups

Therefore, the proof of the finiteness of Sel(Q,W ∗(1)) reduces to showing that the rational
restriction map

locsp : Sel{p}(Q, V )→ H1
/f (Qp, V )

is surjective. Since we have

Sel{p}(Q, V )
locsp // H1

/f
(Qp, V )

exp∗

≃
// Fil0(Dcris(V ))

zQ
� // exp∗ ◦ locsp(zQ) =

L(p)(E, 1)

Ω+
E

· ωE ̸= 0,

locsp is surjective. The finiteness of Selmer groups follows.
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From Euler systems to Kolyvagin systems

We move to Kolyvagin systems.
First, why Kolyvagin systems? There are at least two advantages.

1. The sharp bound via the primitivity, which gives a mod p criterion for verifying the
exact Bloch–Kato type formula and the Iwasawa main conjecture.

2. The structure theorem, not only the size.

We focus on the second advantage. By utilizing the Kolyvagin system argument, the
following statement

If z = {zK}K is an Euler system and zQ is not a torsion, then Sel{p}(Q,W ∗(1)) is
finite.

can be refined as follows:

Let κ = {κn}n be the Kolyvagin system attached to the above Euler system z. If κ is
non-trivial, then the structure of Sel{p}(Q,W ∗(1)) is described in terms of all κn’s.
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Kolyvagin derivatives
We restrict ourselves to the case of elliptic curves again. Let z = {zK}K be Kato’s Euler
system. Then zK ∈ H1(K,T ) is characterized by∑

σ∈Gal(K/Q)

(
exp∗ ◦ locspzσK

)
· χ(σ) =

L(Sp)(E,χ, 1)

Ω
χ(−1)
E

· ωE

where χ is an even character of Gal(K/Q), and S is the product of the ramified primes of
K/Q.
For an integer m ≥ 1, denote by Pm the set of primes ℓ such that (ℓ,Np) = 1, aℓ ≡ ℓ+ 1
(mod pm) and ℓ ≡ 1 (mod pm). For each ℓ ∈ Pm, fix a primitive root ηℓ mod ℓ and write

Gal(Q(ζℓ)/Q) (Z/ℓZ)×≃oo

σηℓ ηℓ
�oo

the Kolyvagin derivative operator Dℓ at ℓ ∈ Pm is defined by

Dℓ =
∑

i · σi
ηℓ

Let Nm be the set of square-free products of primes in Pm and n ∈ Nm. Then we define
Dn =

∏
ℓ|n Dℓ.

Exercise

(σηℓ − 1) ·Dℓ = (ℓ− 1)−NmQ(ζℓ)/Q

in Z[Gal(Q(ζℓ)/Q)].
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Refining Selmer structures

What should we do for the refinement? We need to be more careful about the Selmer
structure. We need slightly more than ramified classes.
Let zQ(ζn) be an Euler system class. Applying the Kolyvagin derivative
Dn ∈ Z[Gal(Q(ζn)/Q)] to zQ(ζn), we have a priori

κ′
n := DnzQ(ζn) (mod ϖm) ∈ Sel{p,ℓ:ℓ|n}(Q,Wm).

Indeed, we can organize κ′
Q(ζn)

with more controlled local conditions at primes dividing n.

Let ℓ be a prime with ℓ ≡ 1 (mod ϖm). Then the transverse local condition at ℓ is defined by

H1
tr(Qℓ,Wm) = ker

(
H1(Qℓ,Wm)→ H1(Qℓ(ζℓ),Wm)

)
,

and it can be viewed as the complement of H1
f at ℓ. We would like to construct

κn ∈ Sel
{p}
n-tr(Q,Wm),

i.e. locℓ(κn) ∈ H1
tr(Qℓ,Wm) for every ℓ dividing n. In Kato’s case, κn = κ′

n.
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finite-singular isomorphism

What is the relation among Kolyvagin system classes?
We consider the case of elliptic curves.

Lemma
Let ℓ be a prime such that ℓ ≡ 1 (mod pm) and assume that T/pmT is unramified at ℓ.
Then:

1. H1
f (Qℓ, E[pm]) ≃ (T/pmT )/(Frobℓ − 1)(T/pmT ).

2. H1
/f

(Qℓ, E[pm]) ≃ Hom(Iℓ, (T/p
mT )Frobℓ=1).

3. H1
/f

(Qℓ, E[pm])⊗Z/pmZ F×
ℓ ≃ (T/pmT )Frobℓ=1.

We now assume ℓ ∈ Pm, i.e. (ℓ,Np) = 1, aℓ ≡ ℓ+ 1 (mod pm) and ℓ ≡ 1 (mod pm). Then
Pℓ(x) = 1− aℓx+ ℓx2 ≡ (x− 1)2 (mod pm). In particular, Pℓ(1) ≡ 0 (mod pm), so write
Pℓ(x) ≡ (x− 1)Q(x) (mod pm) although Q(x) is also x− 1. Then Pℓ(Frob

−1
ℓ ) annihilates

T/pkT , so Q(Frob−1
ℓ )T/pmT ⊆ (T/pmT )Frobℓ=1. In particular,

Q(Frob−1
ℓ ) : (T/pmT )/(Frobℓ − 1)(T/pmT ) ≃ (T/pmT )Frobℓ=1.
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Why the transverse local condition?

Then there exists the finite-singular comparison isomorphism

φfs
ℓ : H1

f (Qℓ, E[pm]) ≃ (T/pmT )/(Frobℓ − 1)(T/pmT )

≃ (T/pmT )Frobℓ=1

≃ H1
/f (Qℓ,Wm)⊗Z/pmZ F×

ℓ

= H1
tr(Qℓ,Wm)⊗Z/pmZ F×

ℓ

obtained from the Euler factor at ℓ. The factor F×
ℓ is inessential for practice.

The axiom for Kolyvagin systems is the following local relation

locℓ(κnℓ) = φfs
ℓ (locℓ(κn)).

Proposition

1. H1
f (Qℓ,Wm) and H1

f (Qℓ,W
∗
m(1)) are orthogonal to each other with respect to ⟨−,−⟩ℓ.

2. H1
tr(Qℓ,Wm) and H1

tr(Qℓ,W
∗
m(1)) are orthogonal to each other with respect to ⟨−,−⟩ℓ.
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The Euler-to-Kolyvagin map

Write Gn = Gal(Q(ζn)/Q) for convenience. Let ES(Q(ζn), T ) ⊆ H1(Q(ζn), T ) be the
Zp[Gal(Q(ζn)/Q)]-submodule generated by cohomology classes in H1(Q(ζn), T ) which are
parts of Euler systems for T . Then we have the commutative diagram

ES(Q(ζn), T )
Dn //

))RR
RRR

RRR
RRR

RRR
RRR

RRR
RRR

RRR
RRR

RRR
RRR

Dn (ES(Q(ζn), T ))
mod pm// (H1(Q(ζn), T )/pm

)Gn

_�

��
H1(Q(ζn), T/pmT )Gn

≃ res−1

��
H1(Q, T/pmT )

and the Euler system class zQ(ζn) maps to the Kolyvagin system class κn following the above
diagram

zQ(ζn) 7→ DnzQ(ζn) 7→ DnzQ(ζn) (mod pm) 7→ κn.

Here, the restriction map is an isomorphism since we assume the large Galois image
assumption. (Why is DnzQ(ζn) (mod pm) Galois invariant?)
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Kolyvagin system argument

We now explain how the Kolyvagin system argument works. We now fix one integer m ≥ 1

while every positive integer m was considered together before. Let κ(m) = (κ
(m)
n )n∈Nm be

the mod pm reduction of Kato’s Kolyvagin system κ, and

λ(n,E[pm]) = lengthZp

(
Sel{p},n-tr(Q, E[pm])

)
,

∂(r)(κ(m)) = min
{
m− lengthZp

(
Z/pmZ · κ(m)

n

)
: n ∈ Nm, ν(n) = r

}
.

Theorem (Mazur–Rubin)
Suppose that κ(m) is non-trivial. Then there exists an integer j ≥ 0 such that

Z/pmZ · κ(m)
n = pj+λ(n,E[pm]) · Sel{p}n-tr(Q, E[pm])

for every n ∈ Nm.

It is also known that there is a non-canonical isomorphism

Sel
{p}
n-tr(Q, E[pm]) ≃ Z/pmZ⊕ Sel{p},n-tr(Q, E[pm])

for every n ∈ Nm.
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The structure theorem

Theorem (Mazur–Rubin)
Suppose that κ(m) is non-trivial. Write

Sel{p}(Q, E[pm]) ≃
⊕
i≥1

Z/pdiZ

with d1 ≥ d2 ≥ · · · . Then for every r ≥ 0, we have

∂(r)(κ(m)) = min

{
m, j +

∑
i>r

di

}
.
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The proof 1
What we know is:

∂(r)(κ(m)) = min {m, j + λ(n,E[pm]) : ν(n) = r} .

Therefore, the r = 0 case follows from

λ(1, E[pm]) =
∑
i>0

di.

Suppose n ∈ Nm and ν(n) = r > 0. Consider the map⊕
ℓ|n

locℓ : Sel{p}(Q, E[pm])→
⊕
ℓ|n

E(Qℓ)⊗ Z/pmZ ≃ (Z/pmZ)⊕ν(n).

The RHS is free of rank r over Z/pmZ. Thus, the image is a quotient of Sel{p}(Q, E[pm])
generated by at most r elements. Thus, the length of the image is at most

∑
i≤r di, and the

length of the kernel is at least
∑

i>r di. Also, the kernel of this map is contained in

Sel{p},n-tr(Q, E[pm]).

Therefore, λ(n,E[pm]) ≥
∑

i>r di, so

∂(r)(κ(m)) ≥ min

{
m, j +

∑
i>r

di

}
.
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The proof 2

It suffices to prove the opposite inequality. We use induction on r. The r = 0 case is already
done. Using Chebotarev density theorem, we can (carefully) choose a prime ℓ ∈ Pm such that

▶ Sel{p,ℓ},n-tr(Q, E[pm]) ≃
⊕

i>r+1 Z/pdiZ, and
▶ Sel{p,ℓ},n-tr(Q, E[pm]) = Sel{p},nℓ-tr(Q, E[pm]).

We are done. It is remarkable that each choice of ℓ kills one generator of the p-strict Selmer
group.
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Cyclotomic units

Exercise
Fix a positive integer m and Let S be the set of square-free products of primes ℓ such that
ℓ ≡ ±1 (mod m), i.e. the Frobenius at ℓ is trivial in Gal(Q(ζm)+/Q). For r ∈ S, let

ξr =

ζm ·
∏
ℓ|r

ζℓ − 1

 ·
ζ−1

m ·
∏
ℓ|r

ζℓ − 1


where ζ□ is a □-th primitive root of unity. For ℓ dividing r, we have

NmQ(ζmr)/Q(ζmr/ℓ)
(ξr) =

(
ξr/ℓ

)Frobℓ−1
.

This is the Euler system relation of cyclotomic units.
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What do we need to have a non-triviality result?

In the “main theorem” of Euler systems, we have

If z = {zK}K is an Euler system and zQ is not a torsion, then Sel{p}(Q,W ∗(1)) is
finite.

For the structure theorem, we have

Let κ = {κn}n be the Kolyvagin system attached to the above Euler system z. If κ is
non-trivial, then the structure of Sel{p}(Q,W ∗(1)) is described in terms of all κn’s.

For the non-torsion property of zQ, we use the explicit reciprocity law

exp∗ ◦ locsp(zQ) =
L(p)(E, 1)

Ω+
E

· ωE

and the non-vanishing of L(E, 1). Thus, the analytic rank zero assumption is essential. How
about the latter? When is κ non-trivial?
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A digression: Heegner points

There is a similar picture for Heegner points over ring class extensions of a certain imaginary
quadratic field K.

If the Heegner point PK over K is non-torsion, then E(K) has rank one and
X(E/K) is finite.

The non-torsion property of PK is equivalent to that the non-vanishing of L′(E/K, 1) via
Gross–Zagier formula.

Let κHg = {κHg
n }n be the Heegner point Kolyvagin system. If κHg is non-trivial,

then the structure of one of Sel(K,E[p∞])± can be described in terms of κHg
n ’s.

When is κHg non-trivial? Always (Kolyvagin’s conjecture, Conjecture A).

Theorem (W. Zhang)
Under mild assumptions (coming from the mod p multiplicity one for Shimura curves), κHg

non-trivial for elliptic curves with good ordinary reduction.

His proof is based on another Euler system argument thanks to Bertolini–Darmon, so called
the level-raising and rank-lowering congruence argument + the cyclotomic Iwasawa main
conjecture (Kato, Skinner-Urban).
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The Kato case

When is κKato non-trivial? Should be always? Yes.

Theorem (K.)
Under the large image assumption, TFAE:

1. κKato is non-trivial.

2. “A small part of” the Iwasawa main conjecture for κKato.

This proof is simple. Indeed, it was just an observation.

Theorem (Burungale–Castella–Grossi–Skinner)
Even in the residually reducible case, the Iwasawa main conjecture for κKato implies the
non-triviality of κKato.

This proof is less simple to bound error terms coming from the small image assumption.
There are more refined conjectures of the non-triviality statements.
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The structure of Selmer groups?

Can we describe the structure of Sel(Q, E[p∞]) (not of Sel{p}(Q, E[p∞])) in terms of κKato?
Because of the local condition at p, it is natural to think of

locsp(κ
Kato) =

{
locsp(κ

Kato
n ) : n ∈ N1

}
.

And it is even possible to prove the structure theorem for Sel(Q, E[p∞]) in terms of
locsp(κ

Kato). In the toolbox, we have:

▶ global Poitou–Tate duality,

▶ Flach’s generalized Cassels–Tate pairing on Selmer groups,

▶ functional equation of modular symbols,

▶ the self-duality of E[pm], and

▶ the core rank one property of Kato’s Kolyvagin systems.

By applying global Poitou–Tate duality to every n-transverse variants of Selmer groups, we
can deduce

lengthSeln-tr(Q, E[pm])− lengthSel{p},n-tr(Q, E[pm]) = ordp(loc
s
p(κ

Kato
n ))− ordp(κ

Kato
n ).

However, this relation is not enough for the structure theorem and the self-duality is
essentially needed.
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The structure of Selmer groups

Theorem (K.)
Under the large image assumption, if κKato is non-trivial, then the structure of
Sel(Q, E[p∞]) can be described in terms of locsp(κ

Kato).

We are still unhappy. It is practically impossible to compute the p-power divisibility of
locsp(κ

Kato
n ) in an abstract cohomology module.

We can define a torsion variant of exp∗ and
then can compute

δ̃n = exp∗ ◦ locsp(κKato
n ) ∈ Z/pmZ

Rather surprisingly, this number (called the “Kurihara number at n”) can be written as a
linear combination of modular symbols (mod pm) and is numerically computable.

Theorem (K.)
Under the large image assumption, if κKato is non-trivial, then the structure of
Sel(Q, E[p∞]) can be described in terms of δ̃n.
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